“新·摩尔定律”并非一个严格定义的学术术语,而是业界对半导体技术发展新趋势的一种概括性描述。它反映了传统摩尔定律(晶体管数量每18-24个月翻倍)逐渐失效后,行业为延续计算性能增长所探索的新方向。以下是其核心内涵:
传统摩尔定律的挑战
- 物理极限:晶体管尺寸逼近原子级别(3nm以下),量子隧穿效应导致漏电和发热。
- 经济成本:先进制程研发费用激增(如3nm芯片研发需数百亿美元),单一厂商难以承担。
- 功耗与散热:芯片功耗呈指数增长,散热成为瓶颈(如高性能CPU/GPU的功耗突破300W)。
新·摩尔定律的核心方向
-
异构计算与Chiplet设计
• 异构集成:将CPU、GPU、AI加速器等不同功能模块整合,提升能效比(如苹果M1/M2芯片)。• Chiplet技术:通过先进封装(如台积电CoWoS)将小芯片组合,降低成本并提升灵活性(如AMD MI300)。
-
新材料与新架构
• GAAFETs:三星3nm工艺采用环绕栅极晶体管,增强栅极控制能力。• 碳纳米管/二维材料:替代硅基材料,突破物理极限(如IBM的2nm实验芯片)。
• 存算一体架构:减少数据搬运,提升AI计算效率(如存内计算芯片)。
-
3D堆叠与先进封装
• Foveros/CoWoS:垂直堆叠芯片,提升性能密度(如英特尔Meteor Lake、英伟达GH200)。• 芯粒互连技术:UCIe标准推动芯粒生态,类似“乐高式”芯片组合。
-
专用加速器与算法协同
• 领域专用芯片(DSA):针对AI、加密等场景优化(如TPU、DPU)。• 软件定义硬件:通过编译器与算法适配硬件,提升利用率(如CUDA生态)。
-
量子计算与光子芯片
• 量子比特扩展:IBM、谷歌等推进量子芯片,探索指数级算力提升。• 光子计算:利用光信号处理数据,解决电芯片能耗瓶颈(如Ayar Labs的硅光芯片)。
行业观点分歧
• 悲观派(如黄仁勋):认为“摩尔定律已死”,需依赖AI和软件优化。
• 乐观派(如英特尔):主张通过GAA、芯粒等技术延续性能增长,目标仍是“每两年提升一次效率”。
新·摩尔定律的本质
其核心目标仍是延续计算能力的性价比增长,但实现路径从单一依赖制程微缩转向多维创新,包括:
• 系统级优化(硬件+软件+算法)
• 新材料与新物理效应
• 异构集成与先进封装
• 新兴计算范式(量子、光子等)
这一趋势标志着半导体产业从“单一追求密度”向“多维协同创新”的转变。