大数定律与中心极限定理

  • 给大家讲个有趣的故事
    • 明天概统小测哦
    • 可惜了 我的智商还停留在小学时代
    • 可惜了,我需要努力学习
    • Physice Doctor in Future

Chebyshev 不等式

P(|X-\mu|\geq a)\leq \frac{DX}{a^2}

(弱)大数定律

Markov 大数定律

Chebyshev 大数定律

独立同分布大数定律

Bernoulli 大数定律

Khinchin 大数定律

中心极限定理

Lindeberg-Levy 中心极限定理

  • 如果\begin{Bmatrix} X_n \end{Bmatrix}独立同分布,且EX=\mu,DX=\sigma^2>0,且n足够大时,\bar{X_n}近似服从正态分布N(\mu,\frac{\sigma^2}{n}),即:

\lim_{n\rightarrow \infty}P(\frac{\bar{X_n}-\mu}{\sigma/\sqrt{n}}<a)=\Phi (a)

De Moivre-Laplace中心极限定理

  • 随机变量序列\begin{Bmatrix} X_n \end{Bmatrix}中,X_n\sim B(n,p),有

\lim_{n\rightarrow\infty}P(\frac{X_n-np}{\sqrt{npq}}\leq x)=\Phi(x)

三种分布

  • 卡方分布

\begin{matrix} X_1,X_2,..\sim N(0,1)\\ \chi ^2(n)=\sum_{i=1}^nX_i^2 \end{matrix}

卡方分布的性质

  • 自由度为n的卡方分布也为参数为(\frac{n}{2},\frac{1}{2})的Gamma 分布
  • 可加性
    • 相互独立的\chi_1^2(n),\chi^2_2(m),满足\chi_1^2(n)+\chi_2^2(m)=\chi^2(m+n)

  • 学生分布(X,Y相互独立)

\begin{matrix} X\sim N(0,1),Y\sim \chi^2(n)\\ t=\frac{X}{\sqrt{\frac{Y}{n}}} \end{matrix}

学生分布的性质

  • n>45,t_p(n)\approx u_p

  • F分布(X,Y相互独立)

\begin{matrix} X\sim\chi^2(n),Y\sim\chi^2(m)\\ F=\frac{X/n}{Y/m} \end{matrix}

F分布的性质

  • F_p(n,m)=\frac{1}{F_{1-p}(m,n)}

抽样分布定理

定理一

\begin{matrix} Sample\,X_1,X_2,X_3,...\,come\,from\,normal\,population\,N(\mu,\sigma^2)\\ then\,(1)\bar{X}\sim N(\mu,\frac{\sigma^2}{n})\\ (2)\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1) \end{matrix}

推论

\begin{matrix} Samples\,from\,any\,population\,satisfy\,that\\ (1)E\bar{X}=E(X)\\ (2)D\bar{X}=DX/n \end{matrix}

定理二

\begin{matrix} samples\,X_1,X_2,...\,come\,from\,normal\,populations\,N(\mu,\sigma^2),then\\ (1)\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)\\ (2)\bar{X}\,and\,S^2\,are\,independent\,variables \end{matrix}

定理三

\begin{matrix} samples\,X_1,X_2,...\,come\,from\,normal\,populations\,N(\mu,\sigma^2),then\\ t=\frac{\bar{X}-u}{S/\sqrt{n})}\sim t(n-1)\\ \end{matrix}

定理四:两个正态总体下的抽样分布定理

\begin{matrix} there\,are\,two\,populations\,X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2)\\ then:S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}\\ T=\frac{\bar{X}-\bar{Y}-(\mu_1-\mu_2)}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2) \end{matrix}

参数估计

正态总体下参数的置信区间

  • 已知\sigma^2=\sigma_0^2,求总体均值\mu的置信区间

\begin{matrix} confidence\,interval:\\ \left ( \bar{X}-u_{1-\frac{\alpha}{2}}\frac{\sigma_0}{\sqrt{n}},\bar{X}+u_{1-\frac{\alpha}{2}}\frac{\sigma_0}{\sqrt{n}} \right ) \end{matrix}

  • \sigma^2未知,求总体均值\mu的置信区间

\begin{matrix} confidence\,interval:\\ \left ( \bar{X}-t_{1-\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}},\bar{X}+t_{1-\frac{\alpha}{2}}(n-1)\frac{S}{\sqrt{n}} \right ) \end{matrix}

  • \mu未知时,总体方程\sigma^2的置信区间  

\begin{matrix} confidence\,interval:\\ \left ( \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)} ,\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}\right ) \end{matrix}

两个正态总体下参数的置信区间

  • \sigma_1^2,\sigma_2^2都已知,求总体均值差\mu_1-\mu_2的置信区间

\left ( \bar{X}-\bar{Y}-u_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}, \bar{X}-\bar{Y}+u_{1-\frac{\alpha}{2}}\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}\right )

  • \sigma_1^2,\sigma_2^2都未知,但\sigma_1^2=\sigma_2^2=\sigma^2,求\mu_1-\mu_2的置信区间

S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}

\left ( \bar{X}-\bar{Y}-t_{1-\frac{\alpha}{2}}S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}, \bar{X}-\bar{Y}+t_{1-\frac{\alpha}{2}}S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right )

  • \mu_1,\mu_2,\sigma_1^2,\sigma_2^2都未知,总体方差比\frac{\sigma_1^2}{\sigma_2^2}的置信区间

\left ( \frac{S_1^2}{S_2^2F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2F_{\frac{\alpha}{2}}(n_1-1,n_2-1)}\right )

假设检验

一个正态总体下参数的假设检验

  • \sigma^2=\sigma_0^2已知时,\mu的检验

U=\frac{\bar{X}-\mu_0}{\sigma_0/\sqrt{n}}\sim N(0,1)

  •  \sigma^2未知,\mu的检验

t=\frac{\bar{X}-\mu_0}{S/\sqrt{n}}\sim t(n-1)

  • \mu未知,\sigma^2的检验

\chi^2=\frac{(n-1)S^2}{\sigma_0^2}\sim\chi^2(n-1)

两个正态总体下参数的假设检验

  • \sigma_1^2,\sigma_2^2已知时,\mu_1=\mu_2的检验

U=\frac{\bar{X}-\bar{Y}}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}\sim N(0,1)

  • \sigma_1^2=\sigma_2^2=\sigma^2,且\sigma^2未知时,\mu_1=\mu_2的检验

T=\frac{\bar{X}-\bar{Y}}{S_w\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)

S_w=\sqrt{\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}}

  • \mu_1,\mu_2未知时,方差 \sigma_1^2=\sigma_2^2 的检验

F=\frac{S_1^2}{S_2^2}\sim F(n_1-1,n_2-1)

自然指数分布族均值参数的检验


总体分布的\chi^2拟合优度检验

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位;对比解析法和数值法的异同点;选取一点,绘制收敛曲线;总的三维电位图+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!
%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%> <!DOCTYPE html> <html大数定律中心极限定理是概率论中的两个重要定理,它们的意义> <head> <meta charset="UTF-8"> <title>Edit User</title> </head> <body> <h1如下: 1. 大数定律:当独立同分布的随机变量的样本数趋近于无>Edit User</h1> <form action="user" method="post"> <input type="hidden" name="action" value穷大时,样本均值趋近于总体均值。这个定理告诉我们,当我们进行大量="update"/> <input type="hidden" name="id" value="<%= request.getAttribute("user").getId() %>"/> <p><label>Username: <input type="text" name="username" value="<%= request.getAttribute("user").getUsername() %>"/></实验或观察时,样本均值会趋近于真实均值,因此我们可以通过实验或观label></p> <p><label>Password: <input type="password" name="password" value="<%= request.getAttribute("user察来对总体进行估计。 2. 中心极限定理:当独立同分布的随机变量").getPassword() %>"/></label></p> <p><label>Email: <input type="email" name="email" value="<的样本数足够大时,样本均值的分布趋近于正态分布。这个定理告%= request.getAttribute("user").getEmail() %>"/></label></p> <p><input type="submit" value="Save"/></p诉我们,当我们进行大量实验或观察时,样本均值的分布会趋近于正态分> </form> <p><a href="user?action=list">Back to List</a></p> </body> </html布,因此我们可以使用正态分布来描述样本均值的分布情况,从而进行统计推> ``` 在这里,我们使用了 JSP 来呈现数据和接收用户的输入。 好了,以上就是断和假设检验等操作。 总的来说,大数定律中心极限定理为我们提供一个基于 MVC 三层架构的 JavaWeb 项目的示例代码。注意,这只是一个简单的示例,实际的项目中可能需要更多的业务逻辑和数据验证。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值