运动积分
在力学系统的运动过程中,描述其状态的 2s 个变量 q_i,\dot{q_i}(i=1,2,⋯) 随时间变化。但是存在关于这些变量的某些函数,其值在运动过程中保持恒定,且仅由初始条件决定,这样的函数称为
广义动量广义速度与哈密顿量
变分法的运算规则
守恒量的证明
- 拉格朗日方程
-
根据运动积分定义能量,动量,角速度
拉格朗日函数的时间均匀性
拉格朗日函数的空间均匀性
拉格朗日函数的空间各向同性
例题
- 处于重力场中的若干带正点粒子,除重力外,相互之间还有库仑排斥力。基于拉格朗日力学的框架,证明它们的总动量在水平方向上守恒。
- 有两个圆形金属板,分别带有等量异号但均匀分布的电荷。将两极板水平放置并使它们 的中心在竖直方向上重合。由于两极板并非无穷大,边界附近电场不会沿竖直方向。考虑若干带正电粒子在如此的电场、重力场,以及相互的库仑排斥力下运动,而且运动区域不受限制(假设不撞上极板)。基于拉格朗日力学的框架,证明粒子总角动量在竖直方向上的分量 Jz守恒。