计算量子力学专题:角动量耦合关系的计算机处理

文章探讨了在多自旋系统中,两个角动量(磁矩)耦合的现象,强调总角动量的守恒性。通过Clebsch-Gordan系数和3j符号,解释了耦合与无耦合表象之间的转换,并提及了6j符号在更复杂系统中的应用。此外,还涉及到了9j符号与广义卡拉系数在高维问题中的角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 计算量子力学专题:多自旋系统中角动量耦合关系的计算机处理

两个角动量的耦合

  •  两个角动量(磁矩)发生耦合,体系便出现附加能量,在此情况下,可以证明两个角动量合成的总角动量为守恒量

  • \hat{\vec{J}}_1,\hat{\vec{J}}_2为分别作用在相互独立的变数的函数上的体系的两个相互独立的角动量算符,即[\hat{\vec{J}}_1,\hat{\vec{J}}_2]且满足角动量的一般对易关系:\hat{\vec{J}}_1\times \hat{\vec{J}}_1=i\hbar \hat{\vec{J}}_1 \hat{\vec{J}}_2\times \hat{\vec{J}}_2=i\hbar \hat{\vec{J}}_2

  • 定义它们的总角动量 \hat{\vec{J}}=\hat{\vec{J}}_1+\hat{\vec{J}}_2 且 \hat{\vec{J}}满足角动量的一般对易关系 \hat{\vec{J}}\times \hat{\vec{J}}=i\hbar \hat{\vec{J}}

  • [\hat{\vec{J}}_x, \hat{\vec{J}}_y]=i\hbar \hat{\vec{J}}_z

  • [\hat{\vec{J}}^2, \hat{\vec{J}}_i]=0

  • [\hat{\vec{J}}_z, \hat{\vec{J}}_1^2]=[\hat{\vec{J}}_z, \hat{\vec{J}}_2^2]=0

力学量完全集合

set one

\begin{Bmatrix} \hat{\vec{J}}^2,\hat{\vec{J}}_z,\hat{\vec{J}}^2_1,\hat{\vec{J}}^2_2 \end{Bmatrix}

\begin{matrix} [\hat{\vec{J}}^2,\hat{\vec{J}}]=0\Leftrightarrow [\hat{\vec{J}}^2,\hat{\vec{J}}_i]=0(i=x,y,z)\\ [\hat{\vec{J}}^2,\hat{\vec{J}}^2_1]=[\hat{\vec{J}}^2,\hat{\vec{J}}^2_1]=0 \\ [\hat{\vec{J}}_z,\hat{\vec{J}}^2_1]=[\hat{\vec{J}}_z,\hat{\vec{J}}^2_2]=0 \\ [\hat{\vec{J}}_1^2,\hat{\vec{J}}^2_2]=0 \end{matrix}

  • 共同本征矢 \begin{Bmatrix} | j,m,j_1,j_2 \rangle \end{Bmatrix}组成正交归一的完全系
    • 以其为基矢的表象为耦合表象
  • 本征方程

\begin{pmatrix} \hat{J}^2\\ \hat{J}_z\\ \hat{J}_1^2\\ \hat{J}_2^2 \end{pmatrix}|j_1,j_2,j,m\rangle= \begin{pmatrix} j(j+1)\hbar^2\\ m\hbar\\ j_1(j_1+1)\hbar^2\\ j_2(j_2+1)\hbar^2 \end{pmatrix}|j_1,j_2,j,m\rangle

set two

\begin{Bmatrix} \hat{\vec{J}}_1^2,\hat{\vec{J}}_{1z},\hat{\vec{J}}^2_2,\hat{\vec{J}}_{2z} \end{Bmatrix}

  • 共同本征矢 \begin{Bmatrix} | j_1,m_1 \rangle | j_2,m_2 \rangle = | j_1m_1j_2m_2\rangle \end{Bmatrix}组成正交归一的完全系
    • 以其为基矢的表象为无耦合表象

\begin{pmatrix} \hat{J}^2_1\\ \hat{J}_{1z}\\ \hat{J}_2^2\\ \hat{J}_{2z} \end{pmatrix}| j_1,m_1,j_2,m_2 \rangle= \begin{pmatrix} j_1(j_1+1)\hbar^2\\ m_1\hbar\\ j_2(j_2+1)\hbar^2\\ m_2\hbar \end{pmatrix}|j_1,m_1,j_2,m_2\rangle

CG系数与3j符号

耦合表象与无耦合表象变换

|j_1,j_2,j,m\rangle = \sum_{m_1,m_2}|j_1,m_1,j_2,m_2\rangle \langle j_1,m_1,j_2,m_2 |j_1,j_2,j,m\rangle

Clebsch - Gorden 系数

  • CG 系数 \langle j_1,m_1,j_2,m_2 |j_1,j_2,j,m\rangle
  • 以 \hat{J}_z = \hat{J}_{1z} + \hat{J}_{2z}
    • 可以进一步展开

三角形关系 

j_{max} = j_1 + j_2 ;j_{min}=|j_1 - j_2|

  • 无耦合表象基矢共有(2j_1+1)(2j_2+1)
  • 三角形关系符号 \Delta (j_1,j_2,j)

C-G 系数表

U系数与6j符号

广义卡拉系数与9j符号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值