变分原理与边值问题的计算机处理

  • 变分原理与边值问题的计算机处理
  • 唉,先讲讲博主故事吧
    • 两年大学 一事无成 
      • 拿过cupt的国三(去了就有)
      • 拿过高教杯的省三(写代码没考虑精度,方程对的,从第二问就算错了)
      • 拿过美赛M(全靠大佬)
      • 雅思考过一次 惨不忍睹
      • 绩点嘛 特拉
        • 大一上 没啥好说的
        • 大一下 也挺正常
        • 大二上 
          • 光学与概统太拉了
        • 大二下
          • 一学期致力于写出一篇文章
            • 然而发现我创造的东西
              • 早就有人创造了。。。。。。
          • 考理力的时候碰上点感情问题
          • 微电子 热统
            • 你考LC电路干什么
            • 我都看不懂电路(物理系不学电路)
    • 来到成都反正身体也不太好
      • 做了一次手术
    • 我前半生最好的也是唯一的朋友 闹掰了
      • 有时候营销号也是有道理的 至少人家每次都能归因出来 不是吗
      • 上了大学 身边不少狠人 有四个熟人 
        • 技术高手
          • 这个很平凡(大学里面高手如云)
        • 一个三多式的人
        • 一个任何时候都很幸运的谜一样的人
        • 一个很清醒的人
      • 祝他们都好
    • 不说了
      • 很遗憾高考的时候 生物化学考了大概是双B(按原方案)
      • 这就太拉了
  • INFJ - T 型人格
    • 只爱少数特定的人
    • 但想大点的事情
  • 川黛物院拔尖废物一个 
    • 多多私信留言哦

基本数学概念回顾

泛函的k阶连续

  • 给定y_0(x),如果对于任意的\varepsilon >0,存在\delta=\delta(y_0(x),\varepsilon ),对任意的满足\begin{vmatrix} y^{(k)}(x)-y_0^{(k)}(x) \end{vmatrix}<\delta都有\begin{vmatrix} I(y(x))-I(y_0(x)) \end{vmatrix}<\varepsilon,则称泛函I(y)y_0(x)处是k阶连续的

Weierstrass 定理

  • F:D\subset R^n\rightarrow R。若D是闭区域,则D上的任意连续函数F都有最大值和最小值且一定在D的内部或者边界上取到。若F连续可微,则FD的内部一点x_0\in D取到极值的必要条件是F在该点的梯度为零。如果D不是闭的则极值可以不存在
  • 即存在无解的变分问题

变分问题的欧拉方程

  • 一元函数泛函取极值的Euler 方程

\left\{\begin{matrix} J(y)=\int_{x_0}^{x_1}F(x,y(x),y'(x))dx\\ y(x_0)=y_0,y(x_1)=y_1 \end{matrix}\right.

  • 对应的函数

F_y-\frac{d}{dx}F_{y'}=0

  • 二元函数泛函取极值的 Euler 方程

I[z(x,y)]=\iint_\Omega F(x,y,z,\frac{\partial z}{\partial x},\frac{\partial z}{\partial y})dxdy

  • 对应的函数 

\frac{\partial z}{\partial z}-\frac{\partial }{\partial x}\frac{\partial F}{\partial p}-\frac{\partial}{\partial y}\frac{\partial F}{\partial q}=0

  • 其中

\left\{\begin{matrix} p=\frac{\partial z}{\partial x}\\ q=\frac{\partial z}{\partial y} \end{matrix}\right.

Hamilton 原理

  • 一个机械能守恒的系统在与约束条件相容的可能运动中,实际可能出现的运动是使积分H=\int_{t_0}^{t_1}(T-U)dt取得极小值的运动,其中T,U分别代表系统的动能和位能

与边值问题等价的变分问题

一维边值问题的泛函等价定理

\left\{\begin{matrix} f(x)=q(x)y-(p(x)y')'\,\,\,x_0<x<x_1\\ y(x_0)=y_0,y(x_1)=y_1 \end{matrix}\right.

  • 其中,p(x)\geq p_0 \geq 0,q(x)\geq0,p(x),q(x)f(x)(x_0,x_1)上足够光滑,则求解上述边值问题等价于求泛函 I[y(x)]=\int_{x_0}^{x_1}(p(x)(y'(x))^2+q(x)y^2(x)-2fy(x))dx 的极小值问题

二维边值问题的泛函等价定理

  • \Omega为一x, y平面上的有界域,\partial \Omega为其边界,在\Omegau(x,y)满足

\left\{\begin{matrix} \frac{\partial^2u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=f(x,y),(x,y)\in \Omega\\ u|_{\partial \Omega}=\varphi(x,y) \end{matrix}\right.

  • 等价于求解泛函I[u]=\iint_{D}[(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2+2uf]dxdy的极小值问题

Galerkin 定理

\left\{\begin{matrix} f(x)=q(x)y-(p(x)y')'\,\,\,x_0<x<x_1\\ y(x_0)=y_0,y(x_1)=y_1 \end{matrix}\right.

  • y(x)上问题的解,其中p(x)连续可微,q(x)连续,其充分必要条件是y(x)满足如下的条件:

\int_{x_0}^{x_1}(p(x)y'(x)z'(x)+q(x)y(x)z(x)-f(x)z(x))dx=0。其中z(x)是集合D=\begin{Bmatrix} y(x)\in C^2(x_0,x_1)|y(x_0)=y_0,y(x_1)=y_1 \end{Bmatrix}中的任意函数

Ritz 方法

选择函数系

  • 线性无关性
  • 空间完备性
  • 基函数连续可导
  • 基函数满足边界条件
  • 一般选择

\begin{Bmatrix} \varphi_k(x) \end{Bmatrix}=\begin{Bmatrix} (x_l-x_0-x)x^k \end{Bmatrix}_{k=1}^{\infty}

求解线性方程组

\begin{matrix} y_n(x)=\sum_{k=0}^na_k\varphi_k(x)\\ Iy_n(x)=\sum_{o,j=1}^na_{i,j}a_ia_j-2\sum_{k=1}^n\beta_ka_k\\ a_{i,j}=\int_{x_0}^{x_l}(p(x)\varphi_i'(x)\varphi_j'(x)+q(x)\varphi_i(x)\varphi_j(x))dx\\ \beta=\int_{x_0}^{x_l}\varphi_k(x)f(x)dx\\ \sum_{k=1}^na_{s,k}a_k=\beta_s\,\,\, s=1,2,...,n \end{matrix}

得出结论

y_n(x)\approx\sum_{k=1}^{n}a_k\varphi_k(x)

证明其收敛性与计算其收敛速度

  • 不易证
  • 收敛速度O(\frac{1}{n+1})

有限元方法

一维有限元方法

  • 一维有限元方法就是采用了\varphi_i(x)=\left\{\begin{matrix} 0 & 0\leq x\leq x_{i-1}\\ \frac{x-x_{i-1}}{h} & x_{i-1}\leq x \leq x_i\\ \frac{x_{i-1}-x}{h} & x_i\leq x\leq x_{i+1}\\ 0&x_{i+1}\leq x \leq l \end{matrix}\right. 作为基函数的 Ritz方法
  • 具体实现见博客

薛定谔方程的有限元解法

二维有限元方法

  • 将多个插值函数构成三角形进行计算
  • 依然是一维有限元方法的延伸
  • 编程过于复杂 不在此展示

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值