什么是大模型的Scaling Raw?

一、概念

        随着学界和业界对大模型的训练越来越深入,行内逐渐总结出了一套颇有信服力的理论,并称之为大模型的Scaling Law(缩放定律,也有翻译为尺度定律)。这个大模型领域的Scaling Law描述了模型的性能如何随着模型规模(如参数数量)、训练数据量、计算资源的增加而变化。当然,最初这个法则有个重要的前提——模型应当是基于Transformer架构的。这个概念来自OpenAI在2020年发表的论文《Scaling Laws for Neural Language Models》,最近似乎这个定律又火了,各路大神不是在证明它依然有效,就是在验证它是否失效。

3538ce7cdd57495fae3e2e09a9e4bcb7.png

二、Scaling Law要点解析

1、模型性能与规模强相关

        Scaling Law表明,模型性能主要取决于模型参数数量(N)、数据集大小(D)和训练计算量(C),在合理范围内,对其他架构超参数(如深度与宽度)的依赖较弱。也就是说即便模型的结构差异很大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值