一、概念
随着学界和业界对大模型的训练越来越深入,行内逐渐总结出了一套颇有信服力的理论,并称之为大模型的Scaling Law(缩放定律,也有翻译为尺度定律)。这个大模型领域的Scaling Law描述了模型的性能如何随着模型规模(如参数数量)、训练数据量、计算资源的增加而变化。当然,最初这个法则有个重要的前提——模型应当是基于Transformer架构的。这个概念来自OpenAI在2020年发表的论文《Scaling Laws for Neural Language Models》,最近似乎这个定律又火了,各路大神不是在证明它依然有效,就是在验证它是否失效。
二、Scaling Law要点解析
1、模型性能与规模强相关
Scaling Law表明,模型性能主要取决于模型参数数量(N)、数据集大小(D)和训练计算量(C),在合理范围内,对其他架构超参数(如深度与宽度)的依赖较弱。也就是说即便模型的结构差异很大