斐波那契数列数列相关简化2

看这篇文章前先看一下第一篇文章:

斐波那契数列数列相关简化1_鱼跃鹰飞的博客-CSDN博客

根据第一篇文章总结如下:

如果某个递归,除了初始项之外,具有如下的形式

F(N) = C1 * F(N) + C2 * F(N-1) + … + Ck * F(N-k) ( C1…Ck k都是常数)

并且这个递归的表达式是严格的、不随条件转移的

那么都存在类似斐波那契数列的优化,时间复杂度都能优化成O(logN)

练一个新的题目:

第一年农场有1只成熟的母牛A,往后的每年:

1)每一只成熟的母牛都会生一只母牛

2)每一只新出生的母牛都在出生的第三年成熟

3)每一只母牛永远不会死

返回N年后牛的数量

 

直接上代码吧,里面有详细的注释:

package dataStructure.fibonacci;

/**
 * 第一年农场有1只成熟的母牛A,往后的每年:
 *
 * 1)每一只成熟的母牛都会生一只母牛
 *
 * 2)每一只新出生的母牛都在出生的第三年成熟
 *
 * 3)每一只母牛永远不会死
 *
 * 返回N年后牛的数量
 */
public class HowManyCowsLeft {
    public static int howManyCows(int n) {
        if(n < 1) return 1;
        if(n <= 4) return n;
        //根据枚举找到的规律或者说可以根据满3年可以生孩子进行的推算,f(n-1)是上一年的
        //f(n-3)是3年前的奶牛数量,3年前的今年都可以生小奶牛了
        return howManyCows(n - 1) + howManyCows(n-3);
    }

    public static int howManyCows2(int n) {
        if(n < 1) return 1;
        if(n <= 4) return n;
        //return howManyCows(n - 1) + howManyCows(n-3);
        // 根据我们之前斐波那契数列数量的经验,这个是有严格推理结构的,没有任何条件的推理
        //最多依赖n-3这应该是一个3阶矩阵
        //|f(4) f(3) f(2)| = f|f(3) f(2) f(1)| * {{a,b,c},{d,e,f},{g,h,i}}
        //|4,3,2| = |3,2,1| * {{a,b,c},{d,e,f},{g,h,i}}->3a+2b+c=4 3d+2e+f=3 3g+2h+i=2
        //|f(5) f(4) f(3)| = f|f(4) f(3) f(2)| * {{a,b,c},{d,e,f},{g,h,i}}
        //|6,4,3| = |4,3,2| * {{a,b,c},{d,e,f},{g,h,i}}->4a+3b+2c=6 4d+3e+2f=4 4g+3h+2i=3
        //|f(6) f(5) f(4)| = f|f(5) f(4) f(3)| * {{a,b,c},{d,e,f},{g,h,i}}
        //|9,6,4| = |6,4,3| * {{a,b,c},{d,e,f},{g,h,i}}->6a+4b+3c=9 6d+4e+3f=6 6g+4h+3i=4
        //通过上面三个方程就可以得出a=1,b=0,c=1 d=1, e=0, f=0, g=0, h=1, i = 0
        //也就是说这个问题的base矩阵就是{{1,0,1},{1,0,0},{0,1,0}}
        //|f(n) f(n-1) f(n-2)| = |f(3) f(2) f(1)| * base的n-3次方
        //先求base的n-3次方
        int[][] base = {{1,0,1},{1,0,0},{0,1,0}};
        int[][] matrix = matrixPower(base, n - 3);
        int[][] matrix321 = {{3,2,1}};
        matrix = product(matrix321, matrix);
        return matrix[0][0];
    }

    private static int[][] product(int[][] matrix1, int[][] matrix2) {
        if(matrix1 == null || matrix2 == null || matrix1[0].length == 0 || matrix1[0].length != matrix2.length) {
            return null;
        }
        //n是matrix1的行数
        int n = matrix1.length;
        //m是matrix2的列数
        int m = matrix2[0].length;
        //k是matrix1的列数,这个数同时也等于matrix2的行数
        int k = matrix1[0].length;
        int[][] matrix = new int[n][m];
        for(int i = 0; i < n; i++) {
            for(int j = 0; j < m; j++) {
                matrix[i][j] = 0;
                for(int k1 = 0; k1 < k; k1++) {
                    matrix[i][j] += matrix1[i][k1] * matrix2[k1][j];
                }
            }
        }
        return matrix;
    }

    private static int[][] matrixPower(int[][] base, int q) {
        int[][] matrix = {{1,0,0},{0,1,0},{0,0,1}};
        int[][] t = base;
        for(; q != 0; q >>= 1) {
            if((q & 1) != 0) {
                matrix = product(matrix, t);
            }
            t = product(t, t);
        }
        return matrix;
    }

    public static void main(String[] args) {
        int n = 6;
        int numsOfCows = howManyCows(n);
        System.out.println(numsOfCows);

        int numsOfCows2 = howManyCows2(n);
        System.out.println(numsOfCows2);
    }

}

属于类似的套路,应该比较好理解,欢迎私信交流

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值