110. 平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
示例 1:
输入:root = [3,9,20,null,null,15,7]
输出:true
示例 2:
输入:root = [1,2,2,3,3,null,null,4,4]
输出:false
示例 3:
输入:root = []
输出:true
提示:
树中的节点数在范围 [0, 5000] 内
-104 <= Node.val <= 104
递归
高度平衡的二叉树:就是每一个结点的左右子树的高度差的绝对值小于等于1。
选择后序遍历来递归,分别向左,向右递归求 l 和 r 的值,如果是-1直接return -1;
在下面进行判断,如果 l 和 r 的差值的绝对值大于1 就return -1;
否则就return (1 + max(l, r));
代码
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
// 返回以该节点为根节点的二叉树的高度,如果不是二叉搜索树了则返回-1
int getheight(TreeNode* node) {
// 如果根节点为空,返回0
if (node == NULL) return 0;
int l = getheight(node->left); //左
if (l == -1) return -1;
int r = getheight(node->right); //右
if (r == -1) return -1;
int result;
if (abs(l - r) > 1) return -1;
else {
result = 1 + max(l, r);
return result;
}
}
bool isBalanced(TreeNode* root) {
return getheight(root) == -1? false:true;
}
};