统计学的Python实现-007:标准差

作者:长行

时间:2019.03.09

标准差:标准差(standard deviation,SD),又称均方差,是衡量一组数据离散程度的统计量,其值为方差的算术平方根。

统计学解释

总体的标准差计算公式如下:
σ = ∑ ( X − μ ) 2 N \sigma = \sqrt\frac{\sum(X-\mu)^2}{N} σ=N(Xμ)2

其中 σ \sigma σ为总体标准差, X X X为变量值, μ \mu μ为总体均值, N N N为总量

样本的标准差计算公式如下:
S = ∑ ( X − x ‾ ) 2 n S = \sqrt\frac{\sum(X-\overline{x})^2}{n} S=n(Xx)2
其中 S S S为样本标准差, X X X为样本值, x ‾ \overline{x} x为样本均值, n n n为样本量

实现代码

data_test=[1,2,3]  # 定义测试数组
总体方差、样本方法计算函数
import numpy
# 计算总体方差
def variance_population(data):
    mean=numpy.mean(data)
    deviation=0
    for i in data:
        deviation+=(i-mean)**2
    return deviation/len(data)
#计算样本方差
def variance_sample(data):
    mean=numpy.mean(data)
    deviation=0
    for i in data:
        deviation+=(i-mean)**2
    return deviation/(len(data)-1)
计算总体标准差
import math
print(math.sqrt(variance_population(data_test)))

结果

0.816496580927726
计算样本标准差
import math
print(math.sqrt(variance_sample(data_test)))

结果

1.0
调用numpy的std方法计算总体标准差
import numpy
print(numpy.std(data_test,ddof=0))

结果

0.816496580927726
调用numpy的std方法计算样本标准差
import numpy
print(numpy.std(data_test,ddof=1))

结果

1.0

代码解释

y=math.sqrt(x)调用math模块的sqrt方法,求x的算术平方根y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值