定义 1(维数、基) 在线性空间 V V V 中,如果存在 n n n 个向量 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,⋯,αn,满足:
- α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,⋯,αn 线性无关;
- V V V 中任一向量 α \boldsymbol{\alpha} α 总可由 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,⋯,αn 线性表示,
那么 α 1 , α 2 , ⋯ , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,⋯,αn 就称为线性空间 V V V 的一个 基, n n n 称为线性空间 V V V 的 维数。只含一个零向量的线性空间没有基,规定它的维数为 0 0 0。维数为 n n n 的线性空间称为 n n n 维线性空间,记作 V n V_n Vn。
于是有坐标的定义如下:
定义 2(坐标) 设
α
1
,
α
2
,
⋯
,
α
n
\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n
α1,α2,⋯,αn 是线性空间
V
n
V_n
Vn 的一个基。对于任一向量
α
∈
V
n
\boldsymbol{\alpha} \in V_n
α∈Vn,总有且仅有一组有序数
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x1,x2,⋯,xn 使
α
=
x
1
α
1
+
x
2
α
2
+
⋯
+
x
n
x
n
\boldsymbol{\alpha} = x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \cdots + x_n \boldsymbol{x}_n
α=x1α1+x2α2+⋯+xnxn
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x1,x2,⋯,xn 这组有序数就称为向量
α
\boldsymbol{\alpha}
α 在
α
1
,
α
2
,
⋯
,
α
n
\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n
α1,α2,⋯,αn 这个基中的 坐标,并记作
α
=
(
x
1
,
x
2
,
⋯
,
x
n
)
T
\boldsymbol{\alpha} = (x_1,x_2,\cdots,x_n)^T
α=(x1,x2,⋯,xn)T
设在
n
n
n 维线性空间
V
n
V_n
Vn 中取定一个基
α
1
,
⋯
,
α
n
\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n
α1,⋯,αn,则
V
n
V_n
Vn 中的向量
α
\boldsymbol{\alpha}
α 与
R
n
\R^n
Rn 中
n
n
n 维数组向量空间的向量
(
x
1
,
⋯
,
x
n
)
T
(x_1,\cdots,x_n)^T
(x1,⋯,xn)T 之间就有一个一一对应的关系,且这个对应关系具有下述性质:
设 α ↔ ( x 1 , ⋯ , x n ) T \boldsymbol{\alpha} \leftrightarrow (x_1,\cdots,x_n)^T α↔(x1,⋯,xn)T, β ↔ ( y 1 , ⋯ , y n ) T \boldsymbol{\beta} \leftrightarrow (y_1,\cdots,y_n)^T β↔(y1,⋯,yn)T,则
- α + β ↔ ( x 1 , ⋯ , x n ) T + ( y 1 , ⋯ , y n ) T \boldsymbol{\alpha} + \boldsymbol{\beta} \leftrightarrow (x_1,\cdots,x_n)^T + (y_1,\cdots,y_n)^T α+β↔(x1,⋯,xn)T+(y1,⋯,yn)T;
- λ α ↔ λ ( x 1 , ⋯ , x n ) T \lambda \boldsymbol{\alpha} \leftrightarrow \lambda (x_1,\cdots,x_n)^T λα↔λ(x1,⋯,xn)T。
定义 3(同构) 设 V V V 与 U U U 是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,那么就说线性空间 V V V 与 U U U 同构。
显然,任何 n n n 维线性空间都与 R n \R^n Rn 同构,即维数相等的线性空间都同构。从而可知线性空间的结构完全被它的维数所决定。