线性代数|维数、基与坐标

定义 1(维数、基) 在线性空间 V V V 中,如果存在 n n n 个向量 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn,满足:

  • α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn 线性无关;
  • V V V 中任一向量 α \boldsymbol{\alpha} α 总可由 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn 线性表示,

那么 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn 就称为线性空间 V V V 的一个 n n n 称为线性空间 V V V维数。只含一个零向量的线性空间没有基,规定它的维数为 0 0 0。维数为 n n n 的线性空间称为 n n n 维线性空间,记作 V n V_n Vn

于是有坐标的定义如下:

定义 2(坐标) 设 α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn 是线性空间 V n V_n Vn 的一个基。对于任一向量 α ∈ V n \boldsymbol{\alpha} \in V_n αVn,总有且仅有一组有序数 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 使
α = x 1 α 1 + x 2 α 2 + ⋯ + x n x n \boldsymbol{\alpha} = x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \cdots + x_n \boldsymbol{x}_n α=x1α1+x2α2++xnxn
x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 这组有序数就称为向量 α \boldsymbol{\alpha} α α 1 , α 2 , ⋯   , α n \boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\cdots,\boldsymbol{\alpha}_n α1,α2,,αn 这个基中的 坐标,并记作
α = ( x 1 , x 2 , ⋯   , x n ) T \boldsymbol{\alpha} = (x_1,x_2,\cdots,x_n)^T α=(x1,x2,,xn)T
设在 n n n 维线性空间 V n V_n Vn 中取定一个基 α 1 , ⋯   , α n \boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n α1,,αn,则 V n V_n Vn 中的向量 α \boldsymbol{\alpha} α R n \R^n Rn n n n 维数组向量空间的向量 ( x 1 , ⋯   , x n ) T (x_1,\cdots,x_n)^T (x1,,xn)T 之间就有一个一一对应的关系,且这个对应关系具有下述性质:

α ↔ ( x 1 , ⋯   , x n ) T \boldsymbol{\alpha} \leftrightarrow (x_1,\cdots,x_n)^T α(x1,,xn)T β ↔ ( y 1 , ⋯   , y n ) T \boldsymbol{\beta} \leftrightarrow (y_1,\cdots,y_n)^T β(y1,,yn)T,则

  • α + β ↔ ( x 1 , ⋯   , x n ) T + ( y 1 , ⋯   , y n ) T \boldsymbol{\alpha} + \boldsymbol{\beta} \leftrightarrow (x_1,\cdots,x_n)^T + (y_1,\cdots,y_n)^T α+β(x1,,xn)T+(y1,,yn)T
  • λ α ↔ λ ( x 1 , ⋯   , x n ) T \lambda \boldsymbol{\alpha} \leftrightarrow \lambda (x_1,\cdots,x_n)^T λαλ(x1,,xn)T

定义 3(同构) 设 V V V U U U 是两个线性空间,如果在它们的向量之间有一一对应关系,且这个对应关系保持线性组合的对应,那么就说线性空间 V V V U U U 同构

显然,任何 n n n 维线性空间都与 R n \R^n Rn 同构,即维数相等的线性空间都同构。从而可知线性空间的结构完全被它的维数所决定。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值