7-3 树的同构 (25 分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
- 图1
- 图2
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
做这题的步骤是:
- 建树(根据题目的输入,使用结构数组,即静态链表作为树的储存结构)
- 补成满二叉树(想象成二叉树,由于题目可以是任意树,没有结点的位置用X来代替)
- 两棵树建好后,使用层序遍历知识(Queue实现),跟其他百度的代码思路不一样,我是利用每层的结点进行实时比较,如果不是相反结点序列 比如 树A的某一层结点为 DEG 如果树B的同层结点顺序不为GED,那么返回No,思路不一样的是,避开了繁琐的判断条件,如果不断进行判断每个结点,时间复杂度很高!
- 输出返回结果
时间复杂度为O(nlog(n))
#include<stdio.h>
#include<iostream>
#include<vector>
#include<queue>
#define max_nodeNum 12
typedef struct tree *Tree ;
using namespace std;
struct oneGroupNodeData{
string no;
int left;
int right;
};
int createNewTree(int index); // index means create treeA or treeB ?
void printTree(struct oneGroupNodeData tree[], int root);
bool coutTreeArray(vector<string>trees[]);
struct oneGroupNodeData tree[2][max_nodeNum]; // treeA and treeB node data
vector<string>treeNode[2];
bool con = true;
int ind = 0;
int sign[max_nodeNum]; // sign ,in order to sure tree's root ,it will be root where index qeuals to 0,other index will be 1
int depthNodeNum[max_nodeNum];
int main(){
int root[2]; //treeA toot,treeB root
for(int i = 0;i<2;i++)
root[i] = createNewTree(i); // 建数, 顺便get Root 根结点
for(int i = 0;i<2;i++){
ind = i;
printTree(tree[i],root[i]); //得到层序遍历输出和每层有多少个结点
}
bool result = coutTreeArray(treeNode); //判断
if(result) //输出结果
cout<<"Yes";
else
cout<<"No";
return 0;
}
int createNewTree(int index){
int nodeNum;
int i,j,k;
int rootIndex = 0;
string n,l,r;
//重置变量
con = true; //reset
for(i = 0;i<max_nodeNum;i++)sign[i] = 0; //reset each times come
//
cin>>nodeNum;
if(nodeNum==0)con = false;
for(i = 0;i<nodeNum;i++){
cin>>n>>l>>r;
tree[index][i].no = n;
if(l.at(0)!='-'){
tree[index][i].left = l.at(0)-48;
sign[tree[index][i].left] = 1;
}
else
tree[index][i].left = -1;
if(r.at(0)!='-'){
tree[index][i].right = r.at(0)-48;
sign[tree[index][i].right] = 1;
}
else
tree[index][i].right = -1;
}
for(i = 0;i<nodeNum;i++) //get root
if(sign[i]!=1){
rootIndex = i;
break;
}
return rootIndex;
}
void printTree( struct oneGroupNodeData tree[],int root){ // 层序遍历
queue<struct oneGroupNodeData>Queue;
struct oneGroupNodeData temp,nodeX;
if(con){
Queue.push(tree[root]);
while(!Queue.empty()){
temp = Queue.front();
Queue.pop();
treeNode[ind].push_back(temp.no);
if(temp.left!=-2){
if(temp.left!=-1){
Queue.push(tree[temp.left]);
}
else{
nodeX.no = "X";
nodeX.left = -2;
nodeX.right = -2;
Queue.push(nodeX);
}
if(temp.right!=-1){
Queue.push(tree[temp.right]);
}
else{
nodeX.no = "X";
nodeX.left = -2;
nodeX.right = -2;
Queue.push(nodeX);
}
}
}
}
}
bool coutTreeArray(vector<string>trees[]){
string cA,cB;
int cardinal = 1; // start to root, after *2
int k = 0;
int temp = 0;
for(int i = 0;i<max_nodeNum;i++){
cA = "";cB = "";
if(k>=trees[0].size())break;
for(k;k<temp+cardinal;k++){
if(k>=trees[0].size())break;
if(trees[0][k]!="X")cA.append(trees[0][k]);
if(trees[1][k]!="X")cB.append(trees[1][k]);
}
cardinal*=2;
temp = k;
//judge is or not 同构
if(cA.length()!=cB.length())return false;
for(int p = 0;p<cA.length();p++)
if(cA.at(cA.length()-p-1)!=cB.at(p))return false;
//
}
return true;
}