7-3 树的同构(25 分)

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。


图1


图2

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (10),即该树的结点数(此时假设结点从0到N1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No
#include<iostream>
//#include<string>
#include<vector>
#define LEN 10

using namespace std;

typedef struct TreeNode{
	int father;
	char letter;
	int left;
	int right;
}treeNode;
vector<treeNode> treea(LEN, {-1, '#', -1, -1});
vector<treeNode> treeb(LEN, {-1, '#', -1, -1});

int input(vector<treeNode> &tree);
int findRoot(int n, vector<treeNode> tree);
bool bfs(int a, int b);

int main()
{
	int na, nb;
	na = input(treea);
	nb = input(treeb);	
//	for(int i = 0; i < na; ++i){
//		cout<<treea[i].letter<<" "<<treea[i].left<<" "<<treea[i].right<<endl;
//	} 
	if(na != nb) cout<<"No"<<endl;
	else{
		if(na == 0 && nb == 0) cout<<"Yes"<<endl;
		else{
			int a, b;
			a = findRoot(na, treea);
			b = findRoot(nb, treeb);
//			cout<<a<<b<<endl;
			if(bfs(a,b)) cout<<"Yes"<<endl;
			else cout<<"No"<<endl;
		}
	} 
	return 0;
}

int input(vector<treeNode> &tree)
{
	int n;
	cin>>n;
	for(int i=0; i<n; ++i){
		cin>>tree[i].letter;
		char ch;
		cin>>ch;
		if(ch != '-'){
			tree[i].left = ch - '0';
			tree[tree[i].left].father = i;
		} 
		cin>>ch;
		if(ch != '-'){
			tree[i].right = ch - '0';
			tree[tree[i].right].father = i;
		} 
	}
	return n;
}

int findRoot(int n, vector<treeNode> tree)
{
	for(int i = 0; i<n; ++i) if(tree[i].father == -1) return i;
}

bool bfs(int a, int b)
{
	if(treea[a].letter != treeb[b].letter) return false;
	
	if(a == -1 && b == -1) return true;
	else{
		if(a == -1 || b == -1) return false;
		
		if(bfs(treea[a].left, treeb[b].right) && bfs(treea[a].right, treeb[b].left)) return true;
		
		if(bfs(treea[a].left, treeb[b].left) && bfs(treea[a].right, treeb[b].right)) return true;
	
		return false;
	}
}
学习算法中,找小伙伴一起学习,另找大神带我。QQ:879228495  微信:17730129962
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页