链接: AcWing算法基础课 第五讲 动态规划 区间DP 石子合并
题目描述
设有 N 堆石子排成一排,其编号为 1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这 N 堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有 4 堆石子分别为 1 3 5 2, 我们可以先合并 1、2 堆,代价为 4,得到 4 5 2, 又合并 1,2 堆,代价为 9,得到 9 2 ,再合并得到 11,总代价为 4+9+11=24;
如果第二步是先合并 2,3 堆,则代价为 7,得到 4 7,最后一次合并代价为 11,总代价为 4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数 N 表示石子的堆数 N。
第二行 N 个数,表示每堆石子的质量(均不超过 1000)。
输出格式
第一行一个数 N 表示石子的堆数 N。
第二行 N 个数,表示每堆石子的质量(均不超过 1000)。
数据范围
1≤N≤300
输入样例:
4
1 3 5 2
输出样例:
22
C++ 代码
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 310;
int n;
int s[N];
int f[N][N];
int main()
{
cin >> n;
for (int i = 1; i <= n; i++) cin >> s[i];
//
for (int i = 1; i <= n; i++) s[i] += s[i-1];
// 由于是连续现连的两堆石子合并,所以可以考虑从第i堆到第j堆
// [i, i+1 ----------, k,-------------- j-1,j]
// 同时对于[i,j]区间, 完成合并需要 N = j - i + 1 - 1 >> N-2 >> N - 3 即 N - 1!(阶乘)
// 思想有点像没有递归的快速排序
// 在这里默认只考虑最后一步,即将[i,k][k+1,j]两堆进行合并
// 考虑左堆右边界 k ,其取值范围为 [i, j-1],左边可以只为一堆
for (int len = 2; len <= n; len ++)
for (int i = 1; i + len - 1 <= n ; i++) // old : i + len - 1 < n eg. 1 + 3 - 1 = 3
{
int j = i + len - 1;
f[i][j] = 1e8;
// 对于 [i, j] ,通过遍历分界点k 求最终的f[i][j]
for (int k = i; k < j; k++)
// 对于[i, j]内的合并, 重量 = s[i] - s[i-1] 利用前缀和求区间总值
f[i][j] = min(f[i][j] , f[i][k] + f[k + 1][j] + s[j] - s[i-1]);
}
cout << f[1][n];
return 0;
}