区间DP 石子合并

在一条直线上有n堆石子,每堆有一定的数量,每次可以将两堆相邻的石子合并,合并后放在两堆的中间位置,合并的费用为两堆石子的总数。求把所有石子合并成一堆的最小花费。

输入
输入第一行包含一个整数n,表示石子的堆数。

接下来一行,包含n个整数,按顺序给出每堆石子的大小 。
输出

输出一个整数,表示合并的最小花费。

样例输入
5
1 2 3 4 5

样例输出
33

提示
1<=n<=1000, 每堆石子至少1颗,最多10000颗。

题目分析:如果不是相邻合并,而是随便两个合并,直接贪心,每次取两个最小的就行,而这个题
需要每次相邻的操作,贪心解决不了问题;我们求的是n个数的最小花费,每次操作的最底层决定
最终的结果;

状态表示:dp[i][j]表示i到j这一段长度区间的最小花费;

状态转移:一定要知道他的上一次有多少种状态,且怎么转到现在的状态;i到j区间的状态是我们
合并的结果,上一次操作是将两个部分合并为现在的状态,上一操作的状态是如何的呢,假如i=2,j=4;
合并区间2到4的合并方式是2到2加上3到4;或者2到3加上4到4,共两种,如果ij相等,结果就是本身的
数值;故

状态转移方程:dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j]) 其中i<=k<=j;sum[i][j]是总花费;

枚举方案:既然是区间dp,首先低层是区间的长度,然后层层递进;然后是i,j,注意不能越界;

初始化:这个地方需要将dp数组初始化为INF,但是初始化的方式不一样,如出现dp[1][1]的情况,
需不需要初始化为INF呢,不需要,因为根据方程,dp[i][j]的j>i;所以dp[i][j]一定要初始化为INF,
而后面出现ij相同的情况,取0即可,后面的数绝对比前面的小,dp[i][j]一定会更新;

#include <iostream>
#include <algorithm>
using namespace std;
const int N=1005;
const int INF=1e9;
int f[N]={0};int sum[N]={0};
int dp[N][N]={0};
int main()
{
 int n;cin>>n;
 for(int i=1;i<=n;i++)
 {
  cin>>f[i];
  sum[i]=f[i]+sum[i-1];//前缀和
 }
 for(int dist=1;dist<=n-1;dist++)
  for(int i=1;i<=n;i++)
  {
   int j=i+dist;
   if(j<=n)
   {
    dp[i][j]=INF;
    for(int k=i;k<=j;k++)
    {
     dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
    }
   }
  }
 cout<<dp[1][n]<<endl;
 return 0;
} ```



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值