链接: AcWing算法基础课 第六讲 贪心 合并果子
注意和 石子合并 的区别,这里是用优先队列来动态使得 最小的两堆进行合并,操作n - 1步,而石子合并是相邻且连续的合并,第几堆 多重已经定好了
题目描述
在一个果园里,达达已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。
达达决定把所有的果子合成一堆。
每一次合并,达达可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。
可以看出,所有的果子经过 n−1 次合并之后,就只剩下一堆了。
达达在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以达达在合并果子时要尽可能地节省体力。
假定每个果子重量都为 1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使达达耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 种果子,数目依次为 1,2,9。
可以先将 1、2 堆合并,新堆数目为 3,耗费体力为 3。
接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12,耗费体力为 12。
所以达达总共耗费体力=3+12=15。
可以证明 15 为最小的体力耗费值。
输入格式
输入包括两行,第一行是一个整数 n,表示果子的种类数。
第二行包含 n 个整数,用空格分隔,第 i 个整数 ai 是第 i 种果子的数目。
输出格式
输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。
输入数据保证这个值小于 231。
数据范围
1≤ n ≤10000,
1≤ a[i] ≤20000
输入样例:
3
1 2 9
输出样例:
15
C++ 代码
#include <iostream>
#include <queue>
#include <vector>
using namespace std;
const int N = 1e4 + 10;
typedef long long LL;
int main()
{
int n;
cin >> n;
priority_queue<int, vector<int>, greater<int>> heap;
// while (n--)
for (int i = 0; i < n; i ++)
{
int x;
cin >> x;
heap.push(x);
}
LL res = 0;
// while (heap.size() > 1)
for (int i = 0; i < n - 1; i++) // 每次
{
int a, b;
a = heap.top(), heap.pop();
b = heap.top(), heap.pop();
res += a + b;
heap.push(a + b);
}
cout << res;
return 0;
}