最长公共子序列和最长公共子串

本文详细介绍了最长公共子序列(LCS)和最长公共子串的概念及区别,并通过实例展示了如何使用动态规划解决这两种问题,包括状态转移方程及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


      首先说一下最长公共子序列和最长公共子串的区别就是前者可以不连续,后者一定是连续的,比如abcde和abced,他的最长公共子序列是abcd或者abce(长度为4),而他们的最长公共子串只abc(长度为3)。

       这两个虽然是两个名字,但这都是LCS(Longest Common Subsequence)问题,是很经典的动态规划问题,以NYOJ的一道题为例:传送门

       对于最长公共子序列,最简单粗暴的方式就是暴力递归求解,还有就是利用二维数组dp对str1[i],str2[j]的状态来存长度。而dp最主要的就是状态转移方程



代码实现

#include <iostream>                     /* 最长公共子序列 */
#include <cstdio>
#include <cstring>
using namespace std;
int n;
int dp[1005][1005];
string str1,str2;

int main()
{
	scanf("%d",&n);
	while(n--){
		cin>>str1>>str2;
		int len1 = str1.length();
		int len2 = str2.length();
		memset(dp,0,sizeof(dp));      // 清空数组
		for(int i=1;i<=len1;i++){
			for(int j=1;j<=len2;j++){
				if(str1[i-1] == str2[j-1])
					dp[i][j] = dp[i-1][j-1] + 1;
				else
					dp[i][j] = dp[i-1][j] > dp[i][j-1] ? dp[i-1][j] : dp[i][j-1];
			}
		}
		printf("%d\n",dp[len1][len2]);
	}
	return 0;
}


       对于最长公共子串的状态转移方程来说,因为子串必须是要连续的,所以当str1[i-1]!=str2[j-1]的时候dp[i][j]的状态应该为0,最后我们还需要定义一个变量来记录dp[i][j]中的最大值,即为最长公共子串的长度。



代码实现

#include <iostream>              /* 最长公共子串 */
#include <cstdio>
#include <cstring>
using namespace std;
int n;
int dp[1005][1005];
string str1,str2;

int main()
{
	scanf("%d",&n);
	while(n--){
		cin>>str1>>str2;
		int len1 = str1.length();
		int len2 = str2.length();
		memset(dp,0,sizeof(dp));
    int temp  = 0;
		for(int i=1;i<=len1;i++){
			for(int j=1;j<=len2;j++){
      if(str1[i-1] == str2[j-1]){
          dp[i][j] = dp[i-1][j-1] + 1;
          temp = max(dp[i][j],temp);
        }
        else{
          dp[i][j] = 0;
        }
			}
		}
		printf("%d\n",temp);
	}
	return 0;
}

          建议按照动态转移方程手动模拟一下dp存长度的过程。


最长公共子序列(Longest Common Subsequence, LCS)最长公共子串(Longest Common Substring)是两个常见的字符串相关问题。 最长公共子序列是指给定两个字符串,要求找到它们之间最长公共子序列的长度。子序列是从原字符串中删除若干个字符而得到的新字符串,字符在新字符串中的相对顺序与原字符串中的保持一致。动态规划是求解LCS问题的常用方法。 以字符串s1 = "ABCBDAB"s2 = "BDCAB"为例,可以使用动态规划的方法求解最长公共子序列的长度。首先创建一个二维数组dp,dp[i][j]表示s1的前i个字符s2的前j个字符之间的最长公共子序列的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,dp[len(s1)][len(s2)]即为最长公共子序列的长度。 对于最长公共子串,要求找到两个字符串中最长公共连续子串的长度。连续子串是指在原字符串中连续出现的字符子序列。同样可以使用动态规划来解决该问题。 仍以上述两个字符串s1s2为例,创建一个二维数组dp,dp[i][j]表示以s1[i-1]s2[j-1]为结尾的公共子串的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = 0。 最后,dp矩阵中的最大值即为最长公共子串的长度。 以上就是求解最长公共子序列最长公共子串的常见方法。在实际应用中,我们可以根据具体的问题选择合适的方法,并结合动态规划来解决这些字符串相关的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值