最长公共子串与最长公共子序列

1. 最长公共子串

要求子串连续,不同于最长公共子序列

def LCS(s1, s2):
    len1, len2 = len(s1), len(s2)
    # 匹配矩阵,用来记录两个字符串中所有位置的两个字符之间的匹配情况(1:匹配;0:不匹配)
    c = [[0 for j in range(len2+1)] for i in range(len1+1)]
    n = 0  # 最长匹配长度
    p = 0  # 匹配的结束位置的下一位
    for i in range(1, len1+1):
        for j in range(1, len2+1):
            if s1[i-1] == s2[j-1]:
                c[i][j] = c[i-1][j-1]+1
            if c[i][j] > n:
                n = c[i][j]
                p = i
    print("最长子串:  ", s1[p-n: p])
    print("最长子串长度:  ", n)

测试

s1 = 'hello boy, good night'
s2 = 'hi boy, good good night'
LCS(s1, s2)
# 最长子串:    boy, good 
# 最长子串长度:   11

2. 最长公共子序列

def LCS_squence(s1, s2):
    len1, len2 = len(s1), len(s2)
    # 匹配矩阵,用来记录两个字符串中所有位置的两个字符之间的匹配情况(1:匹配;0:不匹配)
    c = [[0 for j in range(len2+1)] for i in range(len1+1)]
    for i in range(1, len1+1):
        for j in range(1, len2+1):
            if s1[i-1] == s2[j-1]:
                c[i][j] = c[i-1][j-1]+1
            else:
                c[i][j] = max(c[i-1][j], c[i][j-1])
    print("最长公共子序列长度:  ", c[-1][-1])

    i, j = len1, len2
    result = []
    while c[i][j]:
        if c[i][j] == c[i-1][j]:
            i -= 1
        elif c[i][j] == c[i][j-1]:
            j -= 1
        elif c[i][j] > c[i-1][j-1]:
            i -= 1
            j -= 1
            result.append(s1[i])
    print("最长公共子序列长度:  ", ''.join(result[::-1]))

测试

s1 = 'hello boy, good night'
s2 = 'hi boy, good good night'
LCS_squence(s1, s2)
# 最长公共子序列长度:   17
# 最长公共子序列长度:   h boy, good night

3. DP问题思路分析

对于X=(A,B,C,B,D),Y=(B,D,C,A,B)两者最长公共子序列构成路径表。

 可用动态规划DP求解的问题一般有两个特征:

1. 最优子结构;

2. 重叠子问题。

3.1 最优子结构

        设X=(x1,x2,x3,...,xm),Y=(y1,y2,y3,...,yn),求X和Y的最长公共子序列LCS(X,Y),就是一个最优化问题,首先考虑X的最后一个元素xm与Y的最后一个元素yn。

LCS(X, Y) = LCS(Xm-1, Yn-1)       if xm=yn

LCS(X, Y) =max(LCS(Xm-1, Yn), LCS(Xm, Yn-1))       if xm != yn

把原问题转化成了三个规模更小的子问题。

3.2 重叠子问题

        在问题的继续分解中,有些问题是重叠的,若用递归求解,将有指数级个子问题,故时间复杂度是指数级,而使用DP,可以用一张表记录子问题的解。

LCS的递推式如下:

c[i][j] = 0                        if i=0 or j=0

c[i][j] = c[i-1][j-1]+1       if i,j>0, xi=yj

c[i][j] = max(c[i][j-1], c[i-1][j])     if i,j>0, xi!=yj

c[i][j] = len(lCS(Xi, Yj)) 表示两个序列X和Y的最长公共子序列长度。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最长公共子序列(Longest Common Subsequence, LCS)和最长公共子串(Longest Common Substring)是两个常见的字符串相关问题。 最长公共子序列是指给定两个字符串,要求找到它们之间最长的公共子序列的长度。子序列是从原字符串中删除若干个字符而得到的新字符串,字符在新字符串中的相对顺序与原字符串中的保持一致。动态规划是求解LCS问题的常用方法。 以字符串s1 = "ABCBDAB"和s2 = "BDCAB"为例,可以使用动态规划的方法求解最长公共子序列的长度。首先创建一个二维数组dp,dp[i][j]表示s1的前i个字符和s2的前j个字符之间的最长公共子序列的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 最后,dp[len(s1)][len(s2)]即为最长公共子序列的长度。 对于最长公共子串,要求找到两个字符串中最长的公共连续子串的长度。连续子串是指在原字符串中连续出现的字符子序列。同样可以使用动态规划来解决该问题。 仍以上述两个字符串s1和s2为例,创建一个二维数组dp,dp[i][j]表示以s1[i-1]和s2[j-1]为结尾的公共子串的长度,那么有以下推导关系: 1. 当i=0或j=0时,dp[i][j]=0。 2. 当s1[i-1]=s2[j-1]时,dp[i][j] = dp[i-1][j-1] + 1。 3. 当s1[i-1]!=s2[j-1]时,dp[i][j] = 0。 最后,dp矩阵中的最大值即为最长公共子串的长度。 以上就是求解最长公共子序列最长公共子串的常见方法。在实际应用中,我们可以根据具体的问题选择合适的方法,并结合动态规划来解决这些字符串相关的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值