牛客寒假算法基础集训营4 E. Applese涂颜色(思维+数论)

 

题目链接:https://ac.nowcoder.com/acm/contest/330/E

       结论其实不难推出来,因为要求每一行的相邻的颜色不能一样,那么肯定就是黑白黑白这样交替,那么对于每一行来说都有两种方案,那么结果就是2^n,然而这道题的难点不是推结论,而是高精度,n和m的数据范围都是10^100000,这道题可以用欧拉降幂去写,首先欧拉定理是x^phi(y) ≡ 1(mod y),phi是求y的欧拉值的,根据这一定理,就可以实现降幂的操作了。但是这道题中p是1e9+7,显然是个质数,所以根据欧拉函数的性质有质数的欧拉值为它本身减1,所以这里可以根据费马小定理直接对2^n化简得到2^(n%(p-1)),所以根据同余定理就可以求出n%(p-1)的值了,化简过程如下图。

                     

       然后根据同余定理就可以把n降为p-1以内的数了,然后再根据快速幂求得结果就好了。下面贴上两种code。


AC代码(费马小定理):

#include<bits/stdc++.h>
#define ll long long
const int mod = 1e9 + 7;
using namespace std;
string n,m;

ll ppow(ll a, ll b){
	ll sum = 1;
	a %= mod;
	while(b > 0){
		if(b % 2 == 1) sum = (sum * a) % mod;
		b /= 2;
		a = (a * a) % mod;
	}
	return sum;
}

int main()
{
  cin>>n>>m;
  int len = n.length();
  ll ans = 0;
  for(int i=0;i<len;i++){
    ans = (ans * 10 + (n[i] - '0')) % (mod - 1);
  }
  printf("%lld\n", ppow(2, ans));
  return 0;
}

 

AC代码(欧拉降幂):

#include<bits/stdc++.h>
#define ll long long
const int mod = 1e9 + 7;
using namespace std;
string n,m;

ll ppow(ll a, ll b){
	ll sum = 1;
	a %= mod;
	while(b > 0){
		if(b % 2 == 1) sum = (sum * a) % mod;
		b /= 2;
		a = (a * a) % mod;
	}
	return sum;
}

ll phi(ll n){
    ll res = n;
    for(int i=2;i*i<=n;i++){
        if(n % i == 0) res = res / i * (i - 1);
        while(n % i == 0) n /= i;
    }
    if(n > 1)   res = res / n * (n - 1);
    return res;
}

int main()
{
  cin>>n>>m;
  int len = n.length();
  ll ans = 0;
  ll p = phi(mod);
  for(int i=0;i<len;i++){
    ans = (ans * 10 + (n[i] - '0')) % p;
  }
  printf("%lld\n", ppow(2, ans));
  return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值