题目链接:https://ac.nowcoder.com/acm/contest/330/F
这道题应该是能想到用拓扑排序或者dfs去判断有没有成环的,但是对于拓扑排序来说,每次去判断都需要初始化一次,时间复杂度太大,因为我们可以题目中说了无论是否违反规则,a都能成为b的老板,所以说如果出现了一次违规的情况,之后都会存在这个违规的情况,所以每种情况的答案都是先连续输出Yes,后又连续输出No,根据这一性质我们就可以去二分最后一次Yes的位置,然后根据拓扑排序判断一下是否有环就好了(入队列的元素是否等于n)。
如果是dfs的做法其实就不需要去二分,因为对于前n条边不需要有度数的改变或者初始化什么的操作,只跟前i条边有关,所以我们对于每一次操作直接去dfs搜有没有冲突的情况就好了,这里存边的话是反向存边的,就是我们存的是y的老板是x,而不是存x的学生是y,那么对于每次dfs,因为输入的是x y,表示x是y的老板,那么我们dfs判断的就是x的老板是不是y,如果是的话就冲突了。两种代码我都贴上。
AC代码(dfs):
#include <bits/stdc++.h>
#define maxn 100005
using namespace std;
int n,m;
vector<int> G[maxn];
bool dfs(int x,int y){
for(int i=0;i<G[x].size();i++){
if(G[x][i] == y) return true;
if(dfs(G[x][i], y)) return true;
}
return false;
}
int main()
{
scanf("%d%d",&n,&m);
int x, y;
bool flag = false;
for(int i=0;i<m;i++){
scanf("%d%d",&x, &y);
if(flag == true || dfs(x, y)){
flag = true;
puts("No");
}
else{
G[y].push_back(x);
puts("Yes");
}
}
return 0;
}
AC代码(拓扑排序):
#include <bits/stdc++.h>
#define maxn 100005
using namespace std;
struct Node{
int to,next;
}Edge[maxn << 1];
struct node{
int x,y;
}a[maxn << 1];
int head[maxn], num;
int dep[maxn];
int n,m;
void add(int u,int v){
Edge[num].to = v;
Edge[num].next = head[u];
head[u] = num ++;
}
bool Topo(){
queue<int> q;
int xx = 0;
for(int i=1;i<=n;i++){
if(dep[i] == 0) q.push(i), xx ++;
}
while(!q.empty()){
int u = q.front();
q.pop();
for(int i=head[u];i!=-1;i=Edge[i].next){
int v = Edge[i].to;
if(--dep[v] == 0){
q.push(v);
xx ++;
}
}
}
return xx == n;
}
bool Check(int x){
num = 0;
for(int i=1;i<=n;i++) dep[i] = 0, head[i] = -1;
for(int i=1;i<=x;i++){
add(a[i].x, a[i].y);
dep[a[i].y] ++;
}
return Topo();
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&a[i].x, &a[i].y);
}
int l = 1, r = m, mid;
while(l <= r){
mid = (l + r) >> 1;
if(Check(mid)){
l = mid + 1;
}
else r = mid - 1;
}
for(int i=0;i<r;i++){
puts("Yes");
}
for(int i=r;i<m;i++){
puts("No");
}
return 0;
}