【Leetcode】分治

本文介绍了分治算法的主要思想、步骤和适用情况,并通过LeetCode的三个题目(多数元素、最大子序和、Pow(x, n))详细阐述了分治法的解题思路和代码实现。分治算法在大数据处理如MapReduce中也有广泛应用。" 115105868,10538905,PHP实现简单聊天功能教程,"['PHP', 'MySQL', 'Ajax', 'JSON', '前端开发']
摘要由CSDN通过智能技术生成

MapReduce(分治算法的应用) 是 Google 大数据处理的三驾马车之一,另外两个是 GFSBigtable。它在倒排索引、PageRank 计算、网页分析等搜索引擎相关的技术中都有大量的应用。



主要思想

分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。


分治算法的步骤

  • 分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
  • 治:将这些规模更小的子问题逐个击破
  • 合:将已解决的子问题逐层合并,最终得出原问题的解;
    在这里插入图片描述

分治法适用的情况

  • 原问题的计算复杂度随着问题的规模的增加而增加。
  • 原问题能够被分解成更小的子问题。
  • 子问题的结构和性质与原问题一样,并且相互独立,子问题之间不包含公共的子子问题。
  • 原问题分解出的子问题的解可以合并为该问题的解。

算法应用

169. 多数元素

  • 题目描述

    给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。

    你可以假设数组是非空的,并且给定的数组总是存在众数。

示例 1:

	输入: [3,2,3]
	输出: 3

示例 2:

	输入: [2,2,1,1,1,2,2]
	输出: 2
  • 解题思路

    • 确定切分的终止条件

      直到所有的子问题都是长度为 1 的数组,停止切分。

    • 准备数据,将大问题切分为小问题

      递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回

    • 处理子问题得到子结果,并合并

      • 长度为 1 的子数组中唯一的数显然是众数,直接返回即可。

      • 如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。

      • 如果他们的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数

【代码实现】

  • 分治法
class Solution:

    # 分治法
    def majorityElement(self, nums):
        # 【不断切分的终止条件】
        if not nums:
            return None

        if len(nums) == 1:
            return nums[0]

        # 【准备数据,并将大问题拆分为小问题】
        left = self.majorityElement(nums[:len(nums) // 2])
        right = self.majorityElement(nums[len(nums) // 2:])

        # 【处理子问题,得到子结果】
        # 【对子结果进行合并 得到最终结果】
        if left == right:
            return left

        if nums.count(left) > nums.count(right):
            return left
        else:
            return right
  • 哈希表
# 哈希表
    def majorityElement2(self, nums):
        dicts = {}
        for i in nums:
            dicts[i] = dicts.get(i, 0) + 1

        return max(dicts.keys(), key=dicts.get)

53. 最大子序和

  • 题目描述

    给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回 其最大和。

示例:

	输入: [-2,1,-3,4,-1,2,1,-5,4],
	输出: 6
	解释: 连续子数组 [4,-1,2,1] 的和最大为6。
  • 解题思路

    • 确定切分的终止条件

      直到所有的子问题都是长度为 1 的数组,停止切分。

    • 准备数据,将大问题切分为小问题

      递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回

    • 处理子问题得到子结果,并合并

      • 将数组切分为左右区间

        • 对与左区间:从右到左计算左边的最大子序和
        • 对与右区间:从左到右计算右边的最大子序和
      • 由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区间的和

      • 最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值

【代码实现】

  • 分治法
class Solution:
    # 分治法
    def maxSubArray(self, nums):
        # 【确定不断切分的终止条件】
        n = len(nums)
        if n == 1:
            return nums[0]

        # 【准备数据,并将大问题拆分为小的问题】
        left = self.maxSubArray(nums[:len(nums) // 2])
        right = self.maxSubArray(nums[len(nums) // 2:])

        # max_l为该数组的最左边的元素, max_r为该数组的最右边的元素
        max_l = nums[len(nums) // 2 - 1]
        max_r = nums[len(nums) // 2]

        # 【处理小问题,得到子结果】
        # 从右到左计算左边的最大子序和
        temp = 0
        for i in range(len(nums) // 2 - 1, -1, -1):
            temp += nums[i]
            max_l = max(temp, max_l)

        # 从左到右计算右边的最大子序和
        temp = 0
        for i in range(len(nums) // 2, len(nums)):
            temp += nums[i]
            max_r = max(temp, max_r)

        # 【对子结果进行合并 得到最终结果】
        # 返回三个中的最大值
        return max(left, right, max_l + max_r)
  • 暴力求解法
 def maxSubArray2(self, nums):
        temp = nums[0]
        max_ = temp
        n = len(nums)

        for i in range(1, n):
            # 当当前序列加上此时的元素的值大于tmp的值,说明最大序列和可能出现在后续序列中,记录此时的最大值
            if temp + nums[i] > nums[i]:
                max_ = max(max_, temp + nums[i])
                temp = temp + nums[i]

            # 当tmp(当前和)小于下一个元素时,当前最长序列到此为止。以该元素为起点继续找最大子序列,
            # 并记录此时的最大值
            else:
                max_ = max(temp, max_, temp + nums[i], nums[i])
                temp = nums[i]

        return max_

50. Pow(x, n)

  • 题目描述

    实现 pow(x, n) ,即计算 x 的 n 次幂函数。

示例 1:

	输入: 2.00000, 10
	输出: 1024.00000

示例 2:

	输入: 2.10000, 3
	输出: 9.26100

示例 3:

	输入: 2.00000, -2
	输出: 0.25000
	解释: 2-2 = 1/22 = 1/4 = 0.25

说明:

-100.0 < x < 100.0 n 是 32 位有符号整数,其数值范围是 $[−2^{31}, 2^{31} − 1]$ 。
  • 解题思路

    • 确定切分的终止条件

      对n不断除以2,并更新n,直到为0,终止切分

    • 准备数据,将大问题切分为小问题

      对n不断除以2,更新

    • 处理子问题得到子结果,并合并

      • x与自身相乘更新x
      • 如果n%2 ==1
        • 将p乘以x之后赋值给p(初始值为1),返回p
    • 最终返回p

【代码实现】

class Solution(object):
        def myPow(self, x, n):
            # 处理 n 为负数的情况
            if n < 0:
                x = 1 / x
                n = -n
            # 处理 n 为 0 的情况
            if n == 0:
                return 1

            # 如果 n 为奇数,将其转换为偶数
            if n % 2 == 1:
                p = x * self.myPow(x, n - 1)
                return p

            # 偶数输出
            return self.myPow(x * x, n / 2)

参考资料

五大常用算法之一:分治算法

你不知道的 Python 分治算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值