BZOJ1063: [Noi2008]道路设计-树形DP

传送门

题意:

Z国是一棵树,为了使Z国的交通更加便利顺畅,现决定在Z国的公路系统中确定若干条规划路线,将其中的公路全部改建为铁路。我们定义每条规划路线为一个长度大于1的城市序列,每个城市在该序列中最多出现一次。任意两条规划路线不能有公共部分。一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要不断地换乘长途汽车和火车才能到达首都。我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽车的次数,而Z国的交通系统的“不便利值”为所有城市的不便利值的最大值。

1.确定规划路线修建铁路使得Z国的交通系统的“不便利值”最小

2.有多少种不同的规划路线的选择方案使得“不便利值”达到最小

Solution:

一看题就觉得很像树链剖分,唯一的不同就是一个点可以属于两条重链,由于树剖的性质,所以答案一定是小于 logn log ⁡ n 的,那么我们可以考虑一个状态: f[x][i][0/1/2] f [ x ] [ i ] [ 0 / 1 / 2 ] 表示x的子树内的最大不便利值为i,x向他的儿子连了0/1/2条重链

考虑转移

g[x][i][0/1] g [ x ] [ i ] [ 0 / 1 ] 表示x的父亲中,只考虑x这个儿子的子树内的最大不便利值为i时,x向他的父亲连轻/重边的方案数

g[x][i][0]=f[x][i1][0]+f[x][i1][1]+f[x][i1][2] g [ x ] [ i ] [ 0 ] = f [ x ] [ i − 1 ] [ 0 ] + f [ x ] [ i − 1 ] [ 1 ] + f [ x ] [ i − 1 ] [ 2 ]

g[x][i][1]=f[x][i][0]+f[x][i][1] g [ x ] [ i ] [ 1 ] = f [ x ] [ i ] [ 0 ] + f [ x ] [ i ] [ 1 ]

f[x][i][0]=ysonx(g[y][i][0]) f [ x ] [ i ] [ 0 ] = ∏ y ∈ s o n x ( g [ y ] [ i ] [ 0 ] )

f[x][i][1]=ysonx(g[y][i][1])zsonx,zy(g[z][i][0]) f [ x ] [ i ] [ 1 ] = ∑ y ∈ s o n x ( g [ y ] [ i ] [ 1 ] ) ∏ z ∈ s o n x , z ≠ y ( g [ z ] [ i ] [ 0 ] )

f[x][i][2]=ysonxzsonx(g[y][i][1]g[z][i][1])ksonx,ky,kz(g[k][i][0]) f [ x ] [ i ] [ 2 ] = ∑ y ∈ s o n x ∑ z ∈ s o n x ( g [ y ] [ i ] [ 1 ] ∗ g [ z ] [ i ] [ 1 ] ) ∏ k ∈ s o n x , k ≠ y , k ≠ z ( g [ k ] [ i ] [ 0 ] )

复杂度 O(nlogn) O ( n log ⁡ n )

代码:

#include<cstdio>
#include<iostream>
using namespace std;
const int N=100010;
int n,m,size,head[N],f[N][21][3],g[N][2],mod;
struct edg{
    int to,next;
}e[2*N];
void add(int x,int y){size++;e[size]={x,head[y]};head[y]=size;}
int update(long long x)
{
    if (x&&x%mod==0) return mod;
    else return x%mod;
}
void dfs(int x,int fa)
{
    for (int i=0;i<=20;i++) f[x][i][0]=1; 
    for (int i=head[x];i;i=e[i].next)
    {
        int y=e[i].to;if (y==fa) continue;
        dfs(y,x);
        for (int j=0;j<=20;j++)
        {
            if (j)
                g[y][0]=update(1ll*f[y][j-1][0]+f[y][j-1][1]+f[y][j-1][2]);
            g[y][1]=update(1ll*f[y][j][0]+f[y][j][1]);
            f[x][j][2]=update(1ll*f[x][j][1]*g[y][1]+1ll*f[x][j][2]*g[y][0]);
            f[x][j][1]=update(1ll*f[x][j][0]*g[y][1]+1ll*f[x][j][1]*g[y][0]);
            f[x][j][0]=update(1ll*f[x][j][0]*g[y][0]);

        }
    }
}
int main()
{
    scanf("%d%d%d",&n,&m,&mod);if (m<n-1) {printf("-1\n-1\n");return 0;}
    for (int x,y,i=1;i<=m;i++) scanf("%d%d",&x,&y),add(x,y),add(y,x);
    dfs(1,0);
    int j=0,ans=0;
    while (1)
    {
        ans=update(f[1][j][0]+f[1][j][1]+f[1][j][2]);
        if (ans>0) break;
        j++;
    }
    printf("%d\n%d",j,ans%mod);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值