算法-二分-274. H 指数

274. H 指数

说明

给你一个整数数组 citations ,其中 citations[i] 表示研究者的第 i 篇论文被引用的次数。计算并返回该研究者的 h 指数。

根据维基百科上 h 指数的定义:h 代表“高引用次数” ,一名科研人员的 h 指数 是指他(她)至少发表了 h 篇论文,并且 至少 有 h 篇论文被引用次数大于等于 h 。如果 h 有多种可能的值,h 指数 是其中最大的那个。

 

示例 1:

输入:citations = [3,0,6,1,5]
输出:3 
解释:给定数组表示研究者总共有 5 篇论文,每篇论文相应的被引用了 3, 0, 6, 1, 5 次。
     由于研究者有 3 篇论文每篇 至少 被引用了 3 次,其余两篇论文每篇被引用 不多于 3 次,所以她的 h 指数是 3。
示例 2:

输入:citations = [1,3,1]
输出:1
 

提示:

n == citations.length
1 <= n <= 5000
0 <= citations[i] <= 1000

题解思路

排序遍历

  • 其实这里需要的,就是x以上被引用次数的论文数量与x的最大值
  • 可以先构造一个被引用次数的map,key:被引用次数, value:论文数
  • 然后对keySet进行从大到小的排序(或者直接使用TreeMap,重写其compare方法)
  • 其后做遍历,构造一个num,其意为大于xx引用次数的论文数,进行累加
  • 遍历中的被引用次数key以及num,其中更小的一个即为“x以上被引用次数的论文数量与x”的x
  • 找到最大的x即可

二分

  • 这是一个找某条件最大值的问题
  • 而某条件,可以用一个bool类型来描述——即为可以用一个用时较短的方法判断x是否符合“x以上被引用次数的论文数量与x引用次数”
  • 因此可以考虑二分法
  • 左右边界为0和length,每次取mid,并判断mid这个下标值是否符合h指数的条件
  • 如果符合的话,那么最大的h指数一定比mid更大,在mid以及它的右边,反之则是在左边

代码

排序遍历

class Solution {
    public int hIndex(int[] citations) {
        // key:被引用次数, value:论文数
        Map<Integer, Integer> map = new TreeMap<>(
				new Comparator<Integer>(){
        			@Override
        			public int compare(Integer o1, Integer o2) {
        				// 降序排列
        				return (int) (o2-o1);
        			}
           });
        for(Integer i : citations){
            map.put(i, map.getOrDefault(i, 0) + 1);
        }
        // num为被引用次数大于i的论文数量
        int num = 0, res = 0;
        for(Integer i : map.keySet()){
            num += map.get(i);
            res = Math.max(res, Math.min(i, num));
        }
        return res;
    }
}

二分

class Solution {
    public int hIndex(int[] citations) {
        int len = citations.length;
        int left = 0, right = len;
        while(left < right) {
            int mid = left + ((right - left + 1) / 2);
            // 如果符合H指数的定义,则在右边,mid也可能是
            if(isHIndex(mid, citations)) {
                left = mid;
            } else {
                // 如果不符合,则在左边,mid不可能是
                right = mid - 1;
            }
        }
        return left;
    }

    private boolean isHIndex(int h, int[] citations) {
        int num = 0;
        for(Integer index : citations) {
            if (index >= h) num++;
        }
        return num >= h;
    }
}
  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
各种数学算法的MATLAB实现 第4章: 插值 函数名 功能 Language 求已知数据点的拉格朗日插值多项式 Atken 求已知数据点的艾特肯插值多项式 Newton 求已知数据点的均差形式的牛顿插值多项式 Newtonforward 求已知数据点的前向牛顿差分插值多项式 Newtonback 求已知数据点的后向牛顿差分插值多项式 Gauss 求已知数据点的高斯插值多项式 Hermite 求已知数据点的埃尔米特插值多项式 SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值 SecSample 求已知数据点的二次样条插值多项式及其插值点处的值 ThrSample1 求已知数据点的第一类三次样条插值多项式及其插值点处的值 ThrSample2 求已知数据点的第二类三次样条插值多项式及其插值点处的值 ThrSample3 求已知数据点的第三类三次样条插值多项式及其插值点处的值 BSample 求已知数据点的第一类B样条的插值 DCS 用倒差商算法求已知数据点的有理分式形式的插值分式 Neville 用Neville算法求已知数据点的有理分式形式的插值分式 FCZ 用倒差商算法求已知数据点的有理分式形式的插值分式 DL 用双线性插值求已知点的插值 DTL 用二元三点拉格朗日插值求已知点的插值 DH 用分片双三次埃尔米特插值求插值点的z坐标 第5章: 函数逼近 Chebyshev 用切比雪夫多项式逼近已知函数 Legendre 用勒让德多项式逼近已知函数 Pade 用帕德形式的有理分式逼近已知函数 lmz 用列梅兹算法确定函数的最佳一致逼近多项式 ZJPF 求已知函数的最佳平方逼近多项式 FZZ 用傅立叶级数逼近已知的连续周期函数 DFF 离散周期数据点的傅立叶逼近 SmartBJ 用自适应分段线性法逼近已知函数 SmartBJ 用自适应样条逼近(第一类)已知函数 multifit 离散试验数据点的多项式曲线拟合 LZXEC 离散试验数据点的线性最小二乘拟合 ZJZXEC 离散试验数据点的正交多项式最小二乘拟合 第6章: 矩阵特征值计算 Chapoly 通过求矩阵特征多项式的根来求其特征值 pmethod 幂法求矩阵的主特征值及主特征向量 rpmethod 瑞利商加速幂法求对称矩阵的主特征值及主特征向量 spmethod 收缩法求矩阵全部特征值 ipmethod 收缩法求矩阵全部特征值 dimethod 位移逆幂法求矩阵离某个常数最近的特征值及其对应的特征向量 qrtz QR基本算法求矩阵全部特征值 hessqrtz 海森伯格QR算法求矩阵全部特征值 rqrtz 瑞利商位移QR算法求矩阵全部特征值 第7章: 数值微分 MidPoint 中点公式求取导数 ThreePoint 三点法求函数的导数 FivePoint 五点法求函数的导数 DiffBSample 三次样条法求函数的导数 SmartDF 自适应法求函数的导数 CISimpson 辛普森数值微分法法求函数的导数 Richason 理查森外推算法求函数的导数 ThreePoint2 三点法求函数的二阶导数 FourPoint2 四点法求函数的二阶导数 FivePoint2 五点法求函数的二阶导数 Diff2BSample 三次样条法求函数的二阶导数 第8章: 数值积分 CombineTraprl 复合梯形公式求积分 IntSimpson 用辛普森系列公式求积分 NewtonCotes 用牛顿-科茨系列公式求积分 IntGauss 用高斯公式求积分 IntGaussLada 用高斯拉道公式求积分 IntGaussLobato 用高斯—洛巴托公式求积分 IntSample 用三次样条插值求积分 IntPWC 用抛物插值求积分 IntGaussLager 用高斯-拉盖尔公式求积分 IntGaussHermite 用高斯-埃尔米特公式求积分 IntQBXF1 求第一类切比雪夫积分 IntQBXF2 求第二类切比雪夫积分 DblTraprl 用梯形公式求重积分 DblSimpson 用辛普森公式求重积分 IntDBGauss 用高斯公式求重积分 第9章: 方程求根 BenvliMAX 贝努利法求按模最大实根 BenvliMIN 贝努利法求按模最小实根 HalfInterval 用二分法求方程的一个根 hj 用黄金分割法求方程的一个根 StablePoint 用不动点迭代法求方程的一个根 AtkenStablePoint 用艾肯特加速的不动点迭代法求方程的一个根 StevenStablePoint 用史蒂芬森加速的不动点迭代法求方程的一个根 Secant 用一般弦截法求方程的一个根 SinleSecant 用单点弦截法求方程的一个根 DblSecant 用双点弦截法求方程的一个根 PallSecant 用平行弦截法求方程的一个根 ModifSecant 用改进弦截法求方程的一个根 StevenSecant 用史蒂芬森法求方程的一个根 PYZ 用劈因子法求方程的一个二次因子 Parabola 用抛物线法求方程的一个根 QBS 用钱伯斯法求方程的一个根 NewtonRoot 用牛顿法求方程的一个根 SimpleNewton 用简化牛顿法求方程的一个根 NewtonDown 用牛顿下山法求方程的一个根 YSNewton 逐次压缩牛顿法求多项式的全部实根 Union1 用联合法1求方程的一个根 TwoStep 用两步迭代法求方程的一个根 Montecarlo 用蒙特卡洛法求方程的一个根 MultiRoot 求存在重根的方程的一个重根 第10章: 非线性方程组求解 mulStablePoint 用不动点迭代法求非线性方程组的一个根 mulNewton 用牛顿法法求非线性方程组的一个根 mulDiscNewton 用离散牛顿法法求非线性方程组的一个根 mulMix 用牛顿-雅可比迭代法求非线性方程组的一个根 mulNewtonSOR 用牛顿-SOR迭代法求非线性方程组的一个根 mulDNewton 用牛顿下山法求非线性方程组的一个根 mulGXF1 用两点割线法的第一种形式求非线性方程组的一个根 mulGXF2 用两点割线法的第二种形式求非线性方程组的一个根 mulVNewton 用拟牛顿法求非线性方程组的一组解 mulRank1 用对称秩1算法求非线性方程组的一个根 mulDFP 用D-F-P算法求非线性方程组的一组解 mulBFS 用B-F-S算法求非线性方程组的一个根 mulNumYT 用数值延拓法求非线性方程组的一组解 DiffParam1 用参数微分法中的欧拉法求非线性方程组的一组解 DiffParam2 用参数微分法中的中点积分法求非线性方程组的一组解 mulFastDown 用最速下降法求非线性方程组的一组解 mulGSND 用高斯牛顿法求非线性方程组的一组解 mulConj 用共轭梯度法求非线性方程组的一组解 mulDamp 用阻尼最小二乘法求非线性方程组的一组解 第11章: 解线性方程组的直接法 SolveUpTriangle 求上三角系数矩阵的线性方程组Ax=b的解 GaussXQByOrder 高斯顺序消去法求线性方程组Ax=b的解 GaussXQLineMain 高斯按列主元消去法求线性方程组Ax=b的解 GaussXQAllMain 高斯全主元消去法求线性方程组Ax=b的解 GaussJordanXQ 高斯-若当消去法求线性方程组Ax=b的解 Crout 克劳特分解法求线性方程组Ax=b的解 Doolittle 多利特勒分解法求线性方程组Ax=b的解 SymPos1 LL分解法求线性方程组Ax=b的解 SymPos2 LDL分解法求线性方程组Ax=b的解 SymPos3 改进的LDL分解法求线性方程组Ax=b的解 followup 追赶法求线性方程组Ax=b的解 InvAddSide 加边求逆法求线性方程组Ax=b的解 Yesf 叶尔索夫求逆法求线性方程组Ax=b的解 qrxq QR分解法求线性方程组Ax=b的解 第12章: 解线性方程组的迭代法 rs 里查森迭代法求线性方程组Ax=b的解 crs 里查森参数迭代法求线性方程组Ax=b的解 grs 里查森迭代法求线性方程组Ax=b的解 jacobi 雅可比迭代法求线性方程组Ax=b的解 gauseidel 高斯-赛德尔迭代法求线性方程组Ax=b的解 SOR 超松弛迭代法求线性方程组Ax=b的解 SSOR 对称逐次超松弛迭代法求线性方程组Ax=b的解 JOR 雅可比超松弛迭代法求线性方程组Ax=b的解 twostep 两步迭代法求线性方程组Ax=b的解 fastdown 最速下降法求线性方程组Ax=b的解 conjgrad 共轭梯度法求线性方程组Ax=b的解 preconjgrad 预处理共轭梯度法求线性方程组Ax=b的解 BJ 块雅克比迭代法求线性方程组Ax=b的解 BGS 块高斯-赛德尔迭代法求线性方程组Ax=b的解 BSOR 块逐次超松弛迭代法求线性方程组Ax=b的解 第13章: 随机数生成 PFQZ 用平方取中法产生随机数列 MixMOD 用混合同余法产生随机数列 MulMOD1 用乘同余法1产生随机数列 MulMOD2 用乘同余法2产生随机数列 PrimeMOD 用素数模同余法产生随机数列 PowerDist 产生指数分布的随机数列 LaplaceDist 产生拉普拉斯分布的随机数列 RelayDist 产生瑞利分布的随机数列 CauthyDist 产生柯西分布的随机数列 AELDist 产生爱尔朗分布的随机数列 GaussDist 产生正态分布的随机数列 WBDist 产生韦伯西分布的随机数列 PoisonDist 产生泊松分布的随机数列 BenuliDist 产生贝努里分布的随机数列 BGDist 产生贝努里-高斯分布的随机数列 TwoDist 产生二项式分布的随机数列 第14章: 特殊函数计算 gamafun 用逼近法计算伽玛函数的值 lngama 用Lanczos算法计算伽玛函数的自然对数值 Beta 用伽玛函数计算贝塔函数的值 gamap 用逼近法计算不完全伽玛函数的值 betap 用逼近法计算不完全贝塔函数的值 bessel 用逼近法计算伽玛函数的值 bessel2 用逼近法计算第二类整数阶贝塞尔函数值 besselm 用逼近法计算变型的第一类整数阶贝塞尔函数值 besselm2 用逼近法计算变型的第二类整数阶贝塞尔函数值 ErrFunc 用高斯积分计算误差函数值 SIx 用高斯积分计算正弦积分值 CIx 用高斯积分计算余弦积分值 EIx 用高斯积分计算指数积分值 EIx2 用逼近法计算指数积分值 Ellipint1 用高斯积分计算第一类椭圆积分值 Ellipint2 用高斯积分计算第二类椭圆积分值 第15章: 常微分方程的初值问题 DEEuler 用欧拉法求一阶常微分方程的数值解 DEimpEuler 用隐式欧拉法求一阶常微分方程的数值解 DEModifEuler 用改进欧拉法求一阶常微分方程的数值解 DELGKT2_mid 用中点法求一阶常微分方程的数值解 DELGKT2_suen 用休恩法求一阶常微分方程的数值解 DELGKT3_suen 用休恩三阶法求一阶常微分方程的数值解 DELGKT3_kuta 用库塔三阶法求一阶常微分方程的数值解 DELGKT4_lungkuta 用经典龙格-库塔法求一阶常微分方程的数值解 DELGKT4_jer 用基尔法求一阶常微分方程的数值解 DELGKT4_qt 用变形龙格-库塔法求一阶常微分方程的数值解 DELSBRK 用罗赛布诺克半隐式法求一阶常微分方程的数值解 DEMS 用默森单步法求一阶常微分方程的数值解 DEMiren 用米尔恩法求一阶常微分方程的数值解 DEYDS 用亚当斯法求一阶常微分方程的数值解 DEYCJZ_mid 用中点-梯形预测校正法求一阶常微分方程的数值解 DEYCJZ_adms 用阿达姆斯预测校正法求一阶常微分方程的数值解 DEYCJZ_adms2 用密伦预测校正法求一阶常微分方程的数值解 DEYCJZ_ yds 用亚当斯预测校正法求一阶常微分方程的数值解 DEYCJZ_ myds 用修正的亚当斯预测校正法求一阶常微分方程的数值解 DEYCJZ_hm 用汉明预测校正法求一阶常微分方程的数值解 DEWT 用外推法求一阶常微分方程的数值解 DEWT_glg 用格拉格外推法求一阶常微分方程的数值解 第16章: 偏微分方程的数值解法 peEllip5 用五点差分格式解拉普拉斯方程 peEllip5m 用工字型差分格式解拉普拉斯方程 peHypbYF 用迎风格式解对流方程 peHypbLax 用拉克斯-弗里德里希斯格式解对流方程 peHypbLaxW 用拉克斯-温德洛夫格式解对流方程 peHypbBW 用比姆-沃明格式解对流方程 peHypbRich 用Richtmyer多步格式解对流方程 peHypbMLW 用拉克斯-温德洛夫多步格式解对流方程 peHypbMC 用MacCormack多步格式解对流方程 peHypb2LF 用拉克斯-弗里德里希斯格式解二维对流方程的初值问题 peHypb2FL 用拉克斯-弗里德里希斯格式解二维对流方程的初值问题 peParabExp 用显式格式解扩散方程的初值问题 peParabTD 用跳点格式解扩散方程的初值问题 peParabImp 用隐式格式解扩散方程的初边值问题 peParabKN 用克拉克-尼科尔森格式解扩散方程的初边值问题 peParabWegImp 用加权隐式格式解扩散方程的初边值问题 peDKExp 用指数型格式解对流扩散方程的初值问题 peDKSam 用萨马尔斯基格式解对流扩散方程的初值问题 第17章: 数据统计和分析 MultiLineReg 用线性回归法估计一个因变量与多个自变量之间的线性关系 PolyReg 用多项式回归法估计一个因变量与一个自变量之间的多项式关系 CompPoly2Reg 用二次完全式回归法估计一个因变量与两个自变量之间的关系 CollectAnaly 用最短距离算法的系统聚类对样本进行聚类 DistgshAnalysis 用Fisher两类判别法对样本进行分类 MainAnalysis 对样本进行主成分分析
DSP算法大全C语言版本 完整版,共407页,审阅过的。包含多种数字信号产生、处理、分析方式,并附参考代码。第六章FIR数宇滤波器的设计………………… 227 §6.1窗函数方法……………… .227 §6.2频域最小误差平方设计…… “·自“238 §6.3切比雪夫逼近方法……………………………………………242 第三篇随机数字信号处理 第一章经典谱佔计……………………………………….264 的周期图方法………………·…264 12功率谱估计的相关方法 271 第二章现代谱估计……… 280 §2.1求解一般托布利兹方程组的莱文森算法……………0 82.2求解对称正定方程组的乔里斯基算法 §2.3求解尤利沃克方程的莱文森德宾算法…………灬….28 §24计算ARMA横型的功率谱密度18 §2.5尤利沃克谱佔计算法…………………*…………………22 §2.6协方差谱估计算法 ……ts29 §27Burg谱估计算法 ◆鲁b+吾·合品品‘山点亠4+·日叶中·中‘甲争早导 §2.8最大似然谱估计算法…… 308 第三章时频分析 甲甲甲手曾鲁卧鲁哲雪 §3.1堆格纳( wigner)分布 中中中“由节“昏音山曲画 32离散小波变换 委甲■即 318 第四章随机信号的数字滤波……… §41维纳( Wiener)数字滤波……… …………量·自330 §4-2卡尔曼( Kalman)数字滤波… 会血中自4B44品西4垂4+中如甲吾卧d古 §4-3最小均方(LMS)自适应数字滤波…… ●·中自·自·中中中平看 °·341 §4.4归一化LMS自适应数字滤波……34 §45递推最小二乘(RLs)自适应数字滤波 348 第四篇数字图像处理 第一章图像基本运算 ……·352 §1,1图像读取、存储与显示…… 81.2图像旋转……………………………………………………………366 1.3图像灰度级直方图的计算……………………………………*……3 §1.4图像二值化的固定阀值法… ma·也d■血dp §1.5图像二值化的自适应阀值法 导b血 第二章图像增颯… §2.1图像直方图均衡…………………… w"376 §2.2中值滤波……38 §23图像锐化…… 鲁平t自d “*………382 §2.4图像平滑 P····383 第三章图像边缘检测……………………….356 831 Roberts算子边缘检测…46 §32拉普拉斯算子边缘检测……… “………“敌…388 83.3 Sobel算子边缘检测……; 83.4 Robinson算子边缘检测 小392 §35 Kirsch算子边缘检测……………………………………………394 §3.6 Prewitt算子边缘检测 争昏平辛辛平中萨 396 第四章图像细化…… 喜即香看d画命合b分bb画品目如画如bL晶 品品4甲。自·。·中 399 §4.1 Hilditch细化算法… ●·命··“““…“399 §4.2 Pavlidis细化算法……404 §43 Rosenfeld细化算法………………… 0 第五篇人工神经网络 第一章神经网络模型 t……416 §1.1多层感知器神经网络 ·416 §1.2离散 Hopfield神经网络…………“………………………425 §13连续 Hopfield神经网络………………49434 §I4 Tank-Hopfield线性规划神经网络 ……437 参考文献 44命↓◆命啡4每◆普““女4古“4b中d●·4·面···4·= ,··442 第一篇常用数字信号的产生 第一章数字信号的产生 §1.1均匀分布的随机数 -、功能 产生(a,b)区间上均匀分布的随机数。 方法简介 均匀分布的概率密度函数为 ≤x≤b fCx) 其它 通常用U(b表示均匀分布的均值为“士方差为2 产生均匀分布随机数的方法如下 首先,由给定的初值x0,用混合同余法 T-1+c)(mod M) y; /M 产生(0,1)区间上的随机数y。其中a=2045c=1M=2然后,通过变换z=a+ (b…a)y产生(a,b)区间上的随杋数x 三、使用说明 1.子函数语句 double uniform (a, b, seed) 2形参说明 双精度实型变量。给定区间的下限 b—双精度实型变量。给定区间的上限。 seed——长整型指针变量。*seed为随机数的种子。 四、子函效程序(文件名: uniform,c) double uniform(a,bseed) long int seed double t; 2045爷( seed-#seed-(操Seed/1948576)*1048576; t=(“seed)/1048576.0; t=a+(b-a)头t; return(t)i 五、例题 产生50个0到1之间均匀分布的随机数。 主函数程序(文件名: uniform,m) 杜 include〃 stdio.h includ iform ain( doable a, b,x; int 1,J; g Int s double uniform (double, double, long int *) a-0.0;b=10;s=13579; for(i-0;i<10;i-+) for(j=0:j<5++) =unite printf (". 7fM,x>; intf("\n")y 运行结果 0.48263550.98959450.72067070.77158260.8864250 0.73916340.58915140.81457810.81212620.7979975 0.9483t 0.39095970.51266860.40730760.9440937 0.67162610.47535710.10517980.09266470.4993505 0.13187120.47657490.59566690,13878150,8082657 C.90332890.30759240.02644250.07497020.3141527 0.44230840.5207319 89678960.93463230.3230572 0.65192320.18290330.03722860.13245580.8721647 0,5768661 0.6912775 0.66249660.80548000.2066078 0.51299000.0645466099776740.43443300.4154520 §1.2正态分布的随机数 功能 产生正态分布N(,a2)的随机数。 二,方法简介 正态分布的概率密度函数为 √2πa 通常用、(p,d2)表示。式中p是均值,a2是方差。正态分布也称为高斯分布 产生正态分布随机数的方法如下 设r1 r为(0,1)上n个相互独立的均匀分布的随机数,由于E(n)=1, 根据中心极限定理可知,当n充分大时 r 的分布近似于正态分布N(,1)。通常取n=12,此时有 r一6 最后,再通过变换y=H+x,便可得到均值为八方差为m2的正态分布随机数y 三、使用说明 1.子函数语句 double gauss(mean, sigma, seed) 2.形参说明 mean—双精度实型变量。正态分布的均值k sigma—-双精度实型变量。正态分布的均方差o see 长整型指针变量。餐seed为随机数的种子。 四、子函数程序(文件名: gauss,c) include Uniform,ci double gauss(mean, sigma, s) double mean, sigma; long int *si i int i; double x, y; double uniform() for(x=0,=0;<12i++) x+= uniform(0,0,1.0,) X=x一6.0: y〓mean十x并sgm丑 return (y)f 五、例题 产生50个均值为0方差为1的正态分布的随机数。 主函数程序(文件名 tgauss.m) #include"stdio. hm #include"gauss, c main() t int i,j s long int s# double x, mean, sigma; double gauss(double, double, long int *) mean=0.0; sigma=1.05=13579 for(i=0<10i++) for(j=0<5i十+) x=gauss(mean, sigma, &s) printf(".7",x); printi("\n") 运行结果 2.8997211-0,90885730,2041950-0.2572155-0.8516827 0.79969980,9866190.04313851.919498702543507 0.36892511.2145863 ,05370901.70509531.6925945 0.49287221.9956684.-0.59806631.29232980.1707630 0.5213604-0.40513420.8358479-0.54450801.6452045 0.5338917-0.8120403-0.3886852-0.25463680.4690113 0.4013348-0.1117687-0.9708830.650224713179646 0.53624150.74646191.3275318-0.40414241.8053455 0.8525982-0,24906731.68234440.945543304819355 1.1704273-0.172575002068348-1.9993710.8360157 §1.3指数分布的随机数 功能 产生指数分布的随机数。 方法简介 1.产生随机变量的迆变换法 定理设F(x)是任一连续的分布函数如果~U(0,1)且=F-1(a),那么η~F(x)。 证明由于t~U(0,1),则有 P(≤x)=P(F-(x)≤x)=P(x≤F(x))=F(x) 所以,7~F(x),定理证毕 此定理给出了从均匀分布随机数到给定分布F(x)的随机数的变换。根据该变换可产 生分布函数为F(x)的机效x,其算法可用下列两个步骤实现 (1)产生均匀分布的随机数g,即4~U(0,1)g(2)计算x=F-(t) 2.产生數分布随机的方法 指数分布的概率密度函数为 x≥0 f(x) 0 其它 其分布函效为 FCr)= ,其它 指数分布的均值为,方为P2 根播上述的逆交换法,产生指数分布随机数的方法为 (1)产生均匀分布的随机数M,即w~U(0,1);(2)计算x=-ln(v) 、使用说明 1.子函微语句 double exponent(beta, s) 2.彩参说明 beta——双精皮实型变量。指数分布的均值。 s—长整型指针变量。¥s为随机数的种子。 四、子函数程序(文件名: exponent.[) include "math. h" Include uniform. c uble exponent(bcta, double beta; long int *s i double u,x double uniform) u=uniform(0. 0,1-0,s)+ ta i logt return(x) 五、例题 产生50个均值为2、方差为4的指数分布的随机数。 主函数程序(文件名; exponent n) toinclude stdio. h f include exponentc int i,j; long int s; ouble x 4a; double exponent()+ bea=2.仍;s=t3579; for(i=0;i<10;i++) {for(j=0;j5;j+) i x=exponent(beta, &s printf(".7f", x> 运行结果 45698710,02092010,6551459051862310,2411175 0.6044725 1.0581442 0.4101700 0.4161992 0.451299 0.20000171,87830141.33625131.79637310.1150597 0,7961070 .4873781450416854.75753501.3888938

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值