421. 数组中两个数的最大异或值
难度:中等
语言:java
问题内容
给你一个整数数组 nums ,返回 nums[i] XOR nums[j] 的最大运算结果,其中 0 ≤ i ≤ j < n 。
进阶:你可以在 O(n) 的时间解决这个问题吗?
解题思路
最近的每日一题怎么这么喜欢异或的题目啊。
这一题的解法略有不同,需要引入一个新的东西。
Tire 树
树形结构对应的就是搜索,在搜索的过程中,简化搜索的效率。
借用这张网上放了很多次的图,Tire树其实就是原本的树按照了字母进行了划分,这样做好的好处有别于传统的哈希。
就比如我想找一个人,哈希是一比一的对应关系,除非我找到的是完全一模一样的人,否则,我就直接判断不同;但是Tire树是将内容分类,先找大眼睛的,再找高个子的,满漫缩小分类,最后再搜索到要找的人。
虽然结果都是找到这个人,但是需要的空间就大不相同了。因为哈希表需要先建表,再查询;但是Tire树,查询与建立的过程是叠加的。这里转载一下别人的博客里面的一段话也回答了我开始看的时候的疑惑。
参考博文:http://blog.csdn.net/v_july_v/article/details/6897097
emm,要写答案太复杂了,放弃了,就先这样吧
class Solution {
// 字典树的根节点
Trie root = new Trie();
// 最高位的二进制位编号为 30
static final int HIGH_BIT = 30;
public int findMaximumXOR(int[] nums) {
int n = nums.length;
int x = 0;
for (int i = 1; i < n; ++i) {
// 将 nums[i-1] 放入字典树,此时 nums[0 .. i-1] 都在字典树中
add(nums[i - 1]);
// 将 nums[i] 看作 ai,找出最大的 x 更新答案
x = Math.max(x, check(nums[i]));
}
return x;
}
public void add(int num) {
Trie cur = root;
for (int k = HIGH_BIT; k >= 0; --k) {
int bit = (num >> k) & 1;
if (bit == 0) {
if (cur.left == null) {
cur.left = new Trie();
}
cur = cur.left;
}
else {
if (cur.right == null) {
cur.right = new Trie();
}
cur = cur.right;
}
}
}
public int check(int num) {
Trie cur = root;
int x = 0;
for (int k = HIGH_BIT; k >= 0; --k) {
int bit = (num >> k) & 1;
if (bit == 0) {
// a_i 的第 k 个二进制位为 0,应当往表示 1 的子节点 right 走
if (cur.right != null) {
cur = cur.right;
x = x * 2 + 1;
} else {
cur = cur.left;
x = x * 2;
}
} else {
// a_i 的第 k 个二进制位为 1,应当往表示 0 的子节点 left 走
if (cur.left != null) {
cur = cur.left;
x = x * 2 + 1;
} else {
cur = cur.right;
x = x * 2;
}
}
}
return x;
}
}
class Trie {
// 左子树指向表示 0 的子节点
Trie left = null;
// 右子树指向表示 1 的子节点
Trie right = null;
}