1 问题描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级,那么青蛙跳上一个n级的台阶总共有多少种跳法?
class Solution:
def numWays(self, n: int) -> int:
if n == 1: return 1
elif n == 2: return 3
else:
x, j = 1, 2
temp = None
for cur in range(3, n+1):
temp = int((x + j) % (1e9+7))
x, j = j, temp
return temp
a = Solution()
print(a.numWays(3))
2 问题描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级,也可以跳上,……也可以跳上n级,那么青蛙跳上一个n级的台阶总共有多少种跳法?
解题说明:
(1)这里的f(n) 代表的是n个台阶有一次1,2,…n阶的 跳法数。
(2)n = 1时,只有1种跳法,f(1) = 1
(3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
(4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3),因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
(5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:
f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + … + f(n-1)
(6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:
f(n-1) = f(0) + f(1)+f(2)+f(3) + … + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + … + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)=2^(n-1)
class Solution:
def numWays_b(self, n: int) -> int:
"""方法一:f(n) = 2*f(n-1)"""
res = 1
count = 2
while count <= n:
res *= 2
count += 1
return res
def numWays_c(self, n: int) -> int:
"""方法二:f(n) = 2^f(n-1)"""
return 2**(n - 1)