python--剑指offer--10- II. 青蛙跳台阶问题

文章讨论了青蛙跳上不同台阶的问题,提供了一种递归和一种动态规划的解决方案,指出f(n)与f(n-1)的关系,最终得出f(n)=2^(n-1)的结论。
摘要由CSDN通过智能技术生成

1 问题描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级,那么青蛙跳上一个n级的台阶总共有多少种跳法?

class Solution:
    def numWays(self, n: int) -> int:
        if n == 1: return 1
        elif n == 2: return 3
        else:
            x, j = 1, 2
            temp = None
            for cur in range(3, n+1):
                temp = int((x + j) % (1e9+7))
                x, j = j, temp
            return temp


a = Solution()
print(a.numWays(3))

2 问题描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级,也可以跳上,……也可以跳上n级,那么青蛙跳上一个n级的台阶总共有多少种跳法?

解题说明:

(1)这里的f(n) 代表的是n个台阶有一次1,2,…n阶的 跳法数。
(2)n = 1时,只有1种跳法,f(1) = 1
(3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)
(4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,
那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3),因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)
(5) n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:

f(n) = f(n-1)+f(n-2)+…+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + … + f(n-1)

(6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

f(n-1) = f(0) + f(1)+f(2)+f(3) + … + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + … + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + … + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
  f(n) = 2*f(n-1)=2^(n-1)

class Solution:
    def numWays_b(self, n: int) -> int:
        """方法一:f(n) = 2*f(n-1)"""
        res = 1
        count = 2
        while count <= n:
            res *= 2
            count += 1
        return res

    def numWays_c(self, n: int) -> int:
        """方法二:f(n) = 2^f(n-1)"""
        return 2**(n - 1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值