原码,反码,补码,移码的表示范围以及数据溢出

本文介绍了二进制表示法中的原码、反码、补码和移码在不同位宽下的范围,并详细解释了数据溢出时的处理方法,通过例题解析了如何在实际计算中应用这些概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.表示范围:

假设二进制机器字长是n+1位,且为整数(因为有一位是符号位,这样表示更好理解)

原码表示的范围: −(2^{n}-1)≤  x  ≤2^{n}-1

反码表示的范围: −(2^{n}-1)≤  x  ≤2^{n}-1

补码表示的范围:      −2^{n}≤  x  ≤2^{n}-1

移码表示的范围:      −2^{n}≤  x  ≤2^{n}-1

移码的符号位中0表示负数,1表示正数,简单来说,原码的补码数值位不变,符号位取反就是移码。
对于8位寄存器:
原码表示范围为 -127-127,即1111 1111~0111 1111
反码表示范围为 -127-127,即1000 0000~0111 1111
补码表示范围为 -128-127,即1000 0000~0111 1111
移码表示范围为 -128-127,即0000 0000~1111 1111

2.数据溢出:

数据溢出原理:数据范围的表示是一个环状结构,如果数据增长到最大值,则数据从最小值方向开始依次递增,如果数据减到最小值,则数据从最大值方向开始依次递减。

方法总结:


如果超过该范围的最大值,正值,那么使用该数值减去2^{n}  (n是多少bit 1字节=8bit 2字节=16bit),例如200,超过了127,则200-2^{8}=-56 在该区间内,输出-56
例如500,超过了127,则500-256=244,不在该区间,继续减去256,244-256=-12,在该区间内,输出-12

如果超过该范围的最小值,负值,那么使用该数值加上2^{n} (n是多少bit 1字节=8bit 2字节=16bit),例如-200,超过了最小值,则-200+2^{8}=56 在该区间内,输出56
例如-600,超过了-127,则-600+256=-344,不在该区间,继续+256,-344+256=-88,在该区间内,输出-88

3.例题分析:

例题1(期末考试题): 
若寄存器内容为00000000,若它等于-128,则为(   C )
A. 原码
B. 补码
C. 移码
D. 反码
解题:
符号位为0,所以ABD即原码、反码、补码为正数,正数的原码、反码、补码相同,转换为十进制为0;
移码的符号位中0表示负数,00000000即为-128,由于-128超出8位寄存器原码和反码的范围,所以计算-128的时候不能使用符号位不变数值位取反加一,需要特殊记。

例题2(某公司笔试题):
下列代码的运行结果(B)
short i = 65537;
int j = i + 1;
printf(“i = % d, j = % d\n”, i, j);
A i=65537,j=65538
B i=1,j=2.
C i=-1,j=0
D i=1,j=65538
解题:
short为16位,表示范围为(补码):−2^{15}≤  x  ≤2^{15}-1
int为32位,表示范围为(补码):−2^{31}≤  x  ≤2^{31}-1
i = 65537,超出最大表示范围,使用上述我讲的方法计算,则 65537-2^{16}=1;
根据程序自上而下执行,i = 1,  j = i + 1 = 2,所以选B。


例题3(期末考试题):
设机器数采用补码表示(含1位符号位),若寄存器内容为9BH,则对应的十进制数为(   D )
A. -97
B. -101
C. -27
D. 155
解题:
方法一:9BH转化为十进制为155,因为8位寄存器补码表示范围为 -128-127,溢出,使用上述我讲的方法计算,则155 - 2^{8} = -101;
方法二:9BH转化为二进制为10011011,补码10011011转为原码为11100101,转换为十进制为-101;

4.总结感悟:

这篇文章是我在一次面试后写的,当时面试官问我关于原码,反码,补码,移码的认知,我直接就懵了,面试居然还会问这种问题,我就给面试官简单讲了一下原码,反码,补码,移码的含义和转换,显然面试官不是想听我给他讲定义和转换的,然后面试官下一个问题就是关于数据溢出的,后面又深度的问了我很多关于数据溢出的问题,以及发生数据溢出的解决方案(当时面试官给我描述了一个数据溢出的场景),让我现场敲代码给出解决方案,我当时的做法是换了一个更大的数据储存类型,还加了边界检查以及异常抛出,后面又从数据溢出引出关于内存管理的很多问题,都是给我一个场景,让我现场手撕代码给出解决方案,不过还好,都是一些基础,有一定的代码量和知识储备没有太大问题。

最后给大家一个建议,不管平时学习还是办公,对于一个知识领域,一定要深度学习其底层的原理,不要只停留在表层,仅仅会用是完全不够的。

如果觉得我的这篇文章对你有帮助,请点赞收藏加关注,谢谢大家。

好的,让我们详细了解一下无符号数、原码以及补码的概念及其数值范围。 ### 无符号数 无符号数是指只有正值的数字,在计算机中通常用于表示非负整数。对于一个n位的二进制无符号数: - **取值范围**:0 到 \(2^n - 1\) 例如,8位无符号数的范围是从 `0` (即全零)到 `255` (即所有位都是1),也就是从 `00000000` 到 `11111111`;而16位无符号数则可以表示从 `0` 至 `65535` 的数值。 ### 原码 原码是一种最简单的机器数编码形式,其最高位作为符号位,其中“0”代表正,“1”代表负;其余各位就是该数绝对值对应的二进制数。针对 n 位带符号的整型变量而言: - 正数范围:\(+0\) 到 \((2^{(n-1)}-1)\) - 负数范围:\(-0\) 和 \(-(2^{(n-1)}-1)\) 需要注意的是,在原码体系里存在两个不同的 "0" 表示法 (`+0` 和 `-0`),这可能会带来一些处理上的不便之处。 ### 补码 为了克服原码中存在的某些缺点,并简化运算规则,人们引入了补码系统。在补码表达下: - 对于正数来说,它的补码与其本身一致; - 对于负数,则需要对其反码加一得到补码。 因此在一个包含n个bit位的数据类型内(如 int 类型),所能存储的最大和最小值分别为: -0) 总结一下: - **8位有符号数(采用补码)** * 最小值 = -(2^7)= -128 * 最大值 = +(2^7)-1= +127 - **8位无符号数** * 取值范围为 [0...255] 希望以上内容能够帮助您更好地理解这些概念!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值