算法描述
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
- 简单来说就是:
挖坑填数 + 分而治之
时间复杂度
- 最佳情况:T(n) = O(nlogn)
- 最差情况:T(n) = O(n2)
- 平均情况:T(n) = O(nlogn)
算法演示图
代码实现
第一种
public class QuickSort {
public static int[] quickSort(int[] array, int L, int R) {
if (L >= R)
return array;
int left = L;
int right = R;
int pivot = array[left];
while (left < right) {
while (left < right && array[right] >= pivot) {
right--;
}
if (left < right) {
array[left] = array[right];
}
while (left < right && array[left] <= pivot) {
left++;
}
if (left < right) {
array[right] = array[left];
}
if (left >= right) {
array[left] = pivot;
}
}
quickSort(array, L, right - 1);
quickSort(array, right + 1, R);
return array;
}
public static void main(String[] args) {
int[] array = {3,43,38,5,47,15,36,26,27,2,46,4,19,50,48};
int[] sort = quickSort(array, 0, array.length - 1);
for (int i = 0; i < sort.length; i++) {
System.out.print(sort[i] + " ");
}
}
}
运行结果
第二种
public class QuickSort {
public static int[] quickSort(int[] array, int start, int end) {
if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
int smallIndex = partition(array, start, end);
if (smallIndex > start)
quickSort(array, start, smallIndex - 1);
if (smallIndex < end)
quickSort(array, smallIndex + 1, end);
return array;
}
public static int partition(int[] array, int start, int end) {
int pivot = (int) (start + Math.random() * (end - start + 1));
int smallIndex = start - 1;
swap(array, pivot, end);
for (int i = start; i <= end; i++)
if (array[i] <= array[end]) {
smallIndex++;
if (i > smallIndex)
swap(array, i, smallIndex);
}
return smallIndex;
}
public static void swap(int[] array, int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
public static void main(String[] args) {
int[] array = {3, 43, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
int[] sort = quickSort(array, 0, array.length - 1);
for (int j : sort) {
System.out.print(j + " ");
}
}
}
运行结果