LeetCode#150. 逆波兰表达式求值

文章介绍了如何使用栈逻辑解决LeetCode上的一个问题,即根据逆波兰表示法(后缀表达式)求解算术表达式的值。代码实现过程中,遇到数字则压入栈中,遇到操作符则取出栈顶两个元素进行相应运算,并将结果压回栈中,最后返回栈顶元素作为表达式的结果。
摘要由CSDN通过智能技术生成

LeetCode#150. 逆波兰表达式求值

题目简介

给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。

示例一

输入:tokens = [“2”,“1”,“+”,“3”,“*”]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9

示例二

输入:tokens = [“4”,“13”,“5”,“/”,“+”]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6

示例三

输入:tokens = [“10”,“6”,“9”,“3”,“+”,“-11”,““,”/“,””,“17”,“+”,“5”,“+”]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

所谓的逆波兰表达式,其实就是后缀表达式,其后缀表达式为二叉树中的后序遍历,这里不过赘述,后期介绍

思想逻辑

  • 实现
  • 逻辑:当遍历字符串时,遇到数字则加入到栈中,但遇到操作符,就将栈中的元素取出,进行计算,再将所得结果加入栈中

代码如下

class Solution {
    public int evalRPN(String[] tokens) {
        // Stack<Integer> stack = new Stack<>();
        Deque<Integer> stack = new LinkedList<>();

        for(String s : tokens){
            if("+".equals(s)){
                stack.push(stack.pop() + stack.pop());
            }else if ("-".equals(s)){
                stack.push(-stack.pop() + stack.pop());
            }else if ("*".equals(s)){
                stack.push(stack.pop() * stack.pop());
            }else if ("/".equals(s)){
                int temp1 = stack.pop();
                int temp2 = stack.pop();
                stack.push(temp2 / temp1);
            }else{
                stack.push(Integer.valueOf(s));
            }
        }
        return stack.pop();
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NumberTwoPlayer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值