同余与同余方程(扩展欧几里得)

本文介绍了同余的概念及其性质,并详细探讨了如何利用扩展欧几里得算法解决同余方程,包括求解n^m mod k的值,以及寻找同余方程a * x = c (mod b)的解。文中提到了解的存在性和求解方法,特别强调了解的最小整数形式。
摘要由CSDN通过智能技术生成

同余应该是数论中比较基础的一个东西了。感觉挺重要的。。。高中没学好到大学来补了。

涉及3个数,a,b,m。就是a % m == b % m.

可以写成:a \equiv b(mod m)。

一、同余及其一些性质

同余有一些显然性质,有的时候会有很大功效。(不列举了,一般书上都有的)。

例1:给定整数n,m,k.求n^m mod k的值。m,n,k*k为长整型范围内的自然数。

这样的题根据数据类型有不同的解法:

这里m还在数据类型可表示的范围内,当m极大时,就要用到欧拉降幂这个东西。

这里说一下m还在数据类型可存储范围内的做法。

n^1  \equiv n (mod k)

n^2  \equiv (n mod 7) * (n mod 7) mod 7

n^4  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值