Leetcode239.滑动窗口最大值

题目描述

给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。

返回滑动窗口中的最大值。

示例:

输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]
解释:

滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 max: 3
1 [3 -1 -3] 5 3 6 7 max: 3
1 3 [-1 -3 5] 3 6 7 max: 5
1 3 -1 [-3 5 3] 6 7 max: 5
1 3 -1 -3 [5 3 6] 7 max: 6
1 3 -1 -3 5 [3 6 7] max: 7

题解

本题主要是用来学习双端队列和动态规划的一道经典题目。暂时先把双端队列的解法放上来。动规之后再做补充(?)

暴力(java)

思路:如下。


class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if (nums.length == 0 || k == 0) return new int[0];
        int[] ans = new int[nums.length - k + 1];
        int[] tmp = new int[k];
        for ( int i = 0; i < nums.length - k + 1; i++) {
            // 更新tmp
            int index = 0; 
            for ( int j = i; j < i + k; j ++) {
                tmp[index++] = nums[j]; 
            }
            // 找tmp里的最大值
            Arrays.sort(tmp);
            // 将最大值保存在ans里
            ans[i] = tmp[k-1];
        } 
        return ans;
    }
}

复杂度分析

  • 时间复杂度:O( n ∗ k n * k nk )
  • 空间复杂度:O(n)

双端队列(java)

思路:双端队列即两边都可以直接操作的数据结构。双端队列最常用的地方就是实现一个长度动态变化的窗口或者连续区间,而动态窗口这种数据结构在很多题目里都有运用。

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if(nums == null || nums.length < 2) return nums;
        // 双向队列 保存当前窗口最大值的数组位置 保证队列中数组位置的数值按从大到小排序
        LinkedList<Integer> queue = new LinkedList();
        // 结果数组
        int[] result = new int[nums.length-k+1];
        // 遍历nums数组
        for(int i = 0;i < nums.length;i++){
            // 保证从大到小 如果前面数小则需要依次弹出,直至满足要求
            while(!queue.isEmpty() && nums[queue.peekLast()] <= nums[i]){
                queue.pollLast();
            }
            // 添加当前值对应的数组下标
            queue.addLast(i);
            // 判断当前队列中队首的值是否有效
            if(queue.peek() <= i-k){
                queue.poll();   
            } 
            // 当窗口长度为k时 保存当前窗口中最大值
            if(i+1 >= k){
                result[i+1-k] = nums[queue.peek()];
            }
        }
        return result;
    }
}
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值