斯坦福教授告诉你:什么是多任务学习「 CS330 笔记 (二) 」

这篇博客是斯坦福大学CS330课程的笔记,介绍了多任务学习的基础,包括符号说明、任务定义、常见任务类型和基础结构。讨论了条件任务表示、优化目标和面临的挑战,如负面转移和过拟合。笔记还涵盖了实际案例,如视频推荐系统的多任务排名系统。
摘要由CSDN通过智能技术生成

写在前面

本系列博客为斯坦福大学 Stanford CS330: Multi-Task and Meta-Learning 2019 的学习笔记。博客中出现的图片均为课程演示文档的截图。笔记为课程的内容整理,主要是为了方便自己理解和回顾,若有纰漏和错误,烦请指出,谢谢 ~ 。希望对你有帮助。如需转载,请注明出处。
CS330课程传送门

如果你也好奇什么元学习,好奇为什么要学习元学习,可以先搂一眼这篇元学习课程介绍


多任务学习:

  • 模型 & 训练:
    模型的类型、基础架构、多任务学习的训练过程
  • 挑战:
    处理多任务学习问题中可能遇到的挑战
  • 真实世界多任务学习的案例研究

元学习:

  • 问题陈述(problem formulation)
  • 元学习算法的通用基本框架(general recipe)
  • 黑盒适应方法(Black-box adaptation approaches)

多任务学习基础

符号说明(notation)

在这里插入图片描述

我们用 θ \theta θ来描述网络的参数, x x x是网络的输入, y y y是网络的输出。即可以把该网络表示成:
f θ ( y   ∣   x ) f_{\theta}(y \ |\ x) fθ(y  x)

对于单任务有监督学习问题来说,数据集 D = { ( x , y ) k } \mathcal{D}=\{(x,y)_{k}\} D={ (x,y)k} ,目标为 min ⁡ θ L ( θ , D ) \min\limits_{\theta}\mathcal{L}(\theta,\mathcal{D}) θminL(θ,D) 。如用典型的损失函数,负对数似然函数(NLL损失函数):
L ( θ , D ) = − E ( x , y ) ∼ D [ log ⁡ f θ ( y   ∣   x ) ] \mathcal{L}(\theta,\mathcal{D})=-\mathbb{E}_{(x,y)\sim\mathcal{D}}[\log f_{\theta}(y\ |\ x)] L(θ,D)=E(x,y)D[logfθ(y  x)]

通常我们会用反向传播来优化网络中的参数,运行诸如SGD,Adam等深度学习优化算法。

任务的定义

在上一篇就提到了这个定义,这节对“task”这个概念做一个更正式的定义
T i ≜ { p i ( x ) ,   p i ( y   ∣   x ) ,   L i } \mathcal{T}_i\triangleq \{p_i(x),\ p_i(y\ |\ x),\ \mathcal{L}_i\} Ti{ pi(x), pi(y  x), Li}

  • p i ( x ) p_i(x) p
  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值