菜鸟教程——基于tensorflow的手写数字识别程序

基于mnist数据库

小菜鸟刚开始学Python,用基于tensorflow的手写数字识别程序进行练手。虽然这个例子网上代码教程很多,但是因为实在太菜,都不会调用。只能自己根据各种教程慢慢摸索。开贴纪念一下今天入的坑和出坑方法。给新新新手一个参考,接受交流,不接受吐槽,我是玻璃心小姐姐。
这个是直接调用mnist库的数据进行训练和识别。后面的帖子在更新识别自己手写的数字。
**

安装

**
首先,电脑要装有Python,我的是3.7.3版本 。编辑器我选用的pycharm。
新手刚开始用的话需要在pycharm里下载TensorFlow包。具体下载方式如下:
File——setting——Project——Project Interpreter,最右边有个加号,点击跳出页面,搜索TensorFlow,建议下载1.1.4.0版本。务必输入完整,因为会有很多子系列的包。
下载有点慢要等一会,我刚开始下载失败,一个是因为Python环境没有配置好,还有网速太慢下载失败。在确保环境配置好的情况下多等会就可以。

然后就是创建工程。这个我都会就不说了。

准备MNIST数据库

这个程序需要用到Mnist的数据库,可以去官网下载,一共四个压缩包。
官网地址
http://yann.lecun.com/exdb/mnist/
下载完记得放到同一个文件夹,可以命名MNIST_data。不需要解压,目前网上普遍的代码调用数据库都是以这个命名。
也可以用脚本代码直接调用,输入代码,python可以自动获取mnist数据库并且保存在文件夹里,不需要再自己去官网下载。https://download.csdn.net/download/chenciyuan_nj/11474908
加载mnist数据库代码如下,如果以上步骤按着上面说的来,就可以直接复制。

import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

这边有可能会遇到问题,他会显示没有input_data 这个模块没有并行输入,解决方法是点击左边的图片会出现选项,选择EDIT…选择并行输入
点击左边的图片会出现选项,选择EDIT....选择并行输入
下面部分借鉴官网教程CNN部分。附上总代码https://download.csdn.net/download/chenciyuan_nj/11474911
和官网网址http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html

运行TensorFlow的InteractiveSession

Tensorflow依赖于一个高效的C++后端来进行计算。与后端的这个连接叫做session。一般而言,使用TensorFlow程序的流程是先创建一个图,然后在session中启动它。

这里,我们使用更加方便的InteractiveSession类。通过它,你可以更加灵活地构建你的代码。它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。如果你没有使用InteractiveSession,那么你需要在启动session之前构建整个计算图,然后启动该计算图。

import tensorflow as tf
sess = tf.InteractiveSession()

占位符

我们通过为输入图像和目标输出类别创建节点,来开始构建计算图。

   x = tf.placeholder("float", shape=[None, 784])
    y_ = tf.placeholder("float", shape=[None, 10])

这里的x和y并不是特定的值,相反,他们都只是一个占位符,可以在TensorFlow运行某一计算时根据该占位符输入具体的值。

输入图片x是一个2维的浮点数张量。这里,分配给它的shape为[None, 784],其中784是一张展平的MNIST图片的维度。None表示其值大小不定,在这里作为第一个维度值,用以指代batch的大小,意即x的数量不定。输出类别值y_也是一个2维张量,其中每一行为一个10维的one-hot向量,用于代表对应某一MNIST图片的类别。

虽然placeholder的shape参数是可选的,但有了它,TensorFlow能够自动捕捉因数据维度不一致导致的错误。

权重初始化

为了创建这个模型,我们需要创建大量的权重和偏置项。这个模型中的权重在初始化时应该加入少量的噪声来打破对称性以及避免0梯度。由于我们使用的是ReLU神经元,因此比较好的做法是用一个较小的正数来初始化偏置项,以避免神经元节点输出恒为0的问题(dead neurons)。为了不在建立模型的时候反复做初始化操作,我们定义两个函数用于初始化。

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

卷积和池化

TensorFlow在卷积和池化上有很强的灵活性。我们怎么处理边界?步长应该设多大?在这个实例里,我们会一直使用vanilla版本。我们的卷积使用1步长(stride size),0边距(padding size)的模板,保证输出和输入是同一个大小。我们的池化用简单传统的2x2大小的模板做max pooling。为了代码更简洁,我们把这部分抽象成一个函数。

def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')

第一层卷积
现在我们可以开始实现第一层了。它由一个卷积接一个max pooling完成。卷积在每个5x5的patch中算出32个特征。卷积的权重张量形状是[5, 5, 1, 32],前两个维度是patch的大小,接着是输入的通道数目,最后是输出的通道数目。 而对于每一个输出通道都有一个对应的偏置量。

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

为了用这一层,我们把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数(因为是灰度图所以这里的通道数为1,如果是rgb彩色图,则为3)。

x_image = tf.reshape(x, [-1,28,28,1])

我们把x_image和权值向量进行卷积,加上偏置项,然后应用ReLU激活函数,最后进行max pooling。

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

第二层卷积

为了构建一个更深的网络,我们会把几个类似的层堆叠起来。第二层中,每个5x5的patch会得到64个特征。

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

密集连接层

现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量reshape成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Dropout

为了减少过拟合,我们在输出层之前加入dropout。我们用一个placeholder来代表一个神经元的输出在dropout中保持不变的概率。这样我们可以在训练过程中启用dropout,在测试过程中关闭dropout。 TensorFlow的tf.nn.dropout操作除了可以屏蔽神经元的输出外,还会自动处理神经元输出值的scale。所以用dropout的时候可以不用考虑scale。

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

输出层

最后,我们添加一个softmax层,就像前面的单层softmax regression一样。

    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

训练和评估模型

这个模型的效果如何呢?

为了进行训练和评估,我们使用与之前简单的单层SoftMax神经网络模型几乎相同的一套代码,只是我们会用更加复杂的ADAM优化器来做梯度最速下降,在feed_dict中加入额外的参数keep_prob来控制dropout比例。然后每100次迭代输出一次日志。

cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print "step %d, training accuracy %g"%(i, train_accuracy)
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print "test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})

以上代码,在最终测试集上的准确率大概是99.2%。

目前为止,我们已经学会了用TensorFlow快捷地搭建、训练和评估一个复杂一点儿的深度学习模型。

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值