tensorflow实现手写数字识别

写在前面的话

文章总结自北京大学曹健老师的mooc,点击查看课程,通过学习,我自己撸了一遍代码,现在放在下面。并写了一些自己的认识

环境版本

tensorflow==1.3.0

python==3.5.6

操作系统为ubuntu16

手写数字识别的思路

1、首先,我们用tensorflow官方给出的mnist数据集来训练出一个模型
2、其次,我们用tensorflow官方给出的mnist数据集来测试这个模型的精度
3、将我们自己手写的数字图片喂入神经网络,得出预测结果

代码思路

1、我们先设计一个前向传播网络,这个py文件中定义神经络的输入、参数和输出,定义前向传播过程
get_weight为神经元w参数生成函数
get_bias为偏置b生成函数
forward复现了网络的结构

#0导入模块
import tensorflow as tf

INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

# #定义神经络的输入、参数和输出,定义前向传播过程
def get_weight(shape, regularizer):
	w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))#截断的产生正态分布的随机数,即随机数与均值的差值若大于两倍的标准差,则重新生成。stddev:标准差
	if regularizer != None: tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))#正则化给每个w加权重
	return w

def get_bias(shape):
	b = tf.Variable(tf.zeros(shape))
	return b

def forward(x, regularizer):
	w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
	b1 = get_bias([LAYER1_NODE])
	y1 = tf.nn.relu(tf.matmul(x, w1) + b1)#非线性函数relu的输出

	w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
	b2 = get_bias([OUTPUT_NODE])
	y = tf.matmul(y1, w2) + b2 #输出层不过激活函数,因为要保证概率分布的均匀?
	return y

2、在forward.py文件中,我们定义了神经网络的一些个参数,解释如代码注释,其中我们定义了代码的反向传播纠正参数的结构。定义了ckpt来实现断点续训,并在控制台输出了训练的情况即损失 值的大小。

#0导入模块,生成模拟数据集
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os

BATCH_SIZE = 200#每轮训练喂入数据的量
LEARNING_RATE_BASE = 0.1#学习率
LEARNING_RATE_DECAY = 0.99#指数衰减率
REGULARIZE = 0.0001#正则化权重
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99#衰减因子
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"

def backward(mnist):
	x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
	y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
	y = mnist_forward.forward(x, REGULARIZE)#复现网络结构,推算出预测值
	global_step = tf.Variable(0, trainable=False)
	#定义损失函数,引入了正则化的损失函数,并和交叉熵一起使用
	ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))#计算logits和labels之间的稀疏softmax交叉熵
	cem = tf.reduce_mean(ce)
	loss = cem + tf.add_n(tf.get_collection('losses'))
	#定义指数衰减学习率
	learning_rate = tf.train.exponential_decay(
		LEARNING_RATE_BASE,
		global_step,
		mnist.train.num_examples/BATCH_SIZE,
		LEARNING_RATE_DECAY,
		staircase=True)#如果staircase=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率,如果是False,那就是每一步都更新学习速率

	#定义反向传播方法:包涵正则化
	train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
	#滑动平均值
	ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
	ema_op = ema.apply(tf.trainable_variables())
	with tf.control_dependencies([train_step, ema_op]):
		train_op = tf.no_op(name='train')

	saver = tf.train.Saver()

	with tf.Session() as sess:
		init_op = tf.global_variables_initializer()
		sess.run(init_op)

		ckpt = tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
		if ckpt and ckpt.model_checkpoint_path:
			saver.restore(sess, ckpt.model_checkpoint_path)

		for i in range(STEPS):
			xs, ys = mnist.train.next_batch(BATCH_SIZE)
			_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs,y_: ys})
			if i % 1000 == 0:
				print("After %d training step(s), loss on training batch is %g."%(step, loss_value))
				saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)

def main():
	mnist = input_data.read_data_sets("./data/", one_hot=True)
	backward(mnist)

if __name__ == '__main__':
	main()

3、以上神经网络的结构就算实现了,我们既然已经得到了这个模型,就肯定想知道这个模型是否可以解决我们现在要面临的问题,我们编写一个测试代码来检查神经网络的模型精度。测试集代码也是tensorflow官方给出的mnist数据集。我们复现这个网络,并测试效果,基本上一轮之后你就能观察到精确率达到了90%+。

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
TEST_INTNERVAL_SECS = 10

def test(mnist):
	with tf.Graph().as_default() as g:
		x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
		y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
		y = mnist_forward.forward(x, None)

		ema = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
		ema_restore = ema.variables_to_restore()
		saver = tf.train.Saver(ema_restore)

		correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
		accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

		while True:
			with tf.Session() as sess:
				ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
				if ckpt and ckpt.model_checkpoint_path:
					saver.restore(sess, ckpt.model_checkpoint_path)
					global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
					accuracy_score = sess.run(accuracy, feed_dict={x: mnist.test.images, y_:mnist.test.labels})
					print("After %s training step(s), test accuracy = %g"%(global_step, accuracy_score))
				else:
					print('No checkpoint file found')
					return
			time.sleep(TEST_INTNERVAL_SECS)

def main():
	mnist = input_data.read_data_sets("./data/", one_hot=True)
	test(mnist)

if __name__ == '__main__':
	main()

4、最后,自己愉快地拍下一张照片,来看看这个亲儿子模型是不是好使。粘一下代码:

import tensorflow as tf
import numpy as np
import mnist_forward
import mnist_backward
from PIL import Image


def restore_model(testPicArr):
	#创建一个默认图,在该图中执行以下操作(多数操作和train中一样)
	with tf.Graph().as_default() as tg:
		x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
		y = mnist_forward.forward(x, None)
		preValue = tf.argmax(y, 1)#得到概率最大的预测值

		variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
		variable_to_restore = variable_averages.variables_to_restore()
		saver = tf.train.Saver(variable_to_restore)

		with tf.Session() as sess:
			#chevkpoint 文件定位到最新保存的模型
			ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
			if ckpt and ckpt.model_checkpoint_path:
				saver.restore(sess, ckpt.model_checkpoint_path)

				preValue = sess.run(preValue, feed_dict={x:testPicArr})
				return preValue
			else:
				print("No checkpoint file found'")
				return -1


def pre_pic(picName):
	img = Image.open(picName)
	reIm = img.resize((28,28), Image.ANTIALIAS)
	im_arr = np.array(reIm.convert('L'))
	threshold = 180#设定合理的阈值
	for i in range(28):
		for j in range(28):
			im_arr[i][j] = 255 - im_arr[i][j]
			if(im_arr[i][j] < threshold):
				im_arr[i][j] = 0
			else:
				im_arr[i][j] = 255

	nm_arr = im_arr.reshape([1, 784])
	nm_arr = nm_arr.astype(np.float32)
	img_ready = np.multiply(nm_arr, 1.0/255.0)

	return img_ready

def application():
	# testNum = int(input("input the number of test pictures:"))
	testNum = 1
	for i in range(testNum):
		# testPic = input("the path of test pictures:")
		testPic = 'pic/1.jpg'
		testPicArr = pre_pic(testPic)
		preValue = restore_model(testPicArr)
		print("The prediction number is : ", preValue)


if __name__ == '__main__':
	application()

5、图片如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
识别结果如下:

root@iZ2zef0icee95uw35ttpgmZ:/home/kai/mnist# python3 hand_write_app.py
The prediction number is :  [2]
root@iZ2zef0icee95uw35ttpgmZ:/home/kai/mnist# cd pic
root@iZ2zef0icee95uw35ttpgmZ:/home/kai/mnist/pic# ls
1.jpg
root@iZ2zef0icee95uw35ttpgmZ:/home/kai/mnist/pic# cd ./
root@iZ2zef0icee95uw35ttpgmZ:/home/kai/mnist/pic# cd ../
root@iZ2zef0icee95uw35ttpgmZ:/home/kai/mnist# python3 hand_write_app.py
The prediction number is :  [7]
root@iZ2zef0icee95uw35ttpgmZ:/home/kai/mnist# python3 hand_write_app.py
The prediction number is :  [5]

6、分析:
大家先只看[ ]里面的输出结果,因为中间我使用pscp拷贝替换了图片
识别了三张图片,最后一张6识别成了5,其他两张识别正确,思考和心得体会见下文

---------- 代码已经结束了,就是上面的四个py文件,接下来你看到的是我的分析过程 ------

心得体会

分析一:这里我使用了三张图片,一开始都不能识别,后来我经过调试,发现是阈值 threshold 给的太低了,我一开始给的是50,然后一张也识别不了,代码是没有错的,应该就是在图像预处理这方面出了差错,我先打印输出了 1图片的灰度矩阵 和 2当阈值为50时的 图片灰度反转后的值 和 3当阈值为50时的 图片的样子,测试结果如下:
1图片的灰度矩阵
在这里插入图片描述
2当阈值为50时的 图片灰度反转后的值 :明显看出阈值选择错误导致2的特征失真
在这里插入图片描述
3当阈值为50时的 图片的样子:
自己脑补一下,反正全是黑的不能训练
分析二:
当阈值为180,我自己调的参数结果明显变好,全是明显的轮廓,所以可以用于训练。

结论

图像的预处理真的很重要,我们要保证图片的特征存在。

  • 5
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值