Series.apply
(func, convert_dtype=True, args=(), **kwds)
func:对Series的值调用函数。可以是ufunc(适用于整个Series的NumPy函数)或仅对单个值工作的Python函数
convert_dtype: 尝试为基本函数结果找到更好的元素类型(dtype)。如果为False,则元素类型(dtype)为object类型
args: 除了值之外,还要传递给函数的位置参数
**kwds : 传递给函数的字典参数(多个传递给函数的参数)
实例:
df5 = pd.Series([1, 3, 4, 5], index=['a', 'b', 'c', 'd'])
# convert_dtype为False时,返回的元素类型是object,如果为True时,返回的是int64
df3 = df5.apply(lambda x: x**2, convert_dtype=False)
print(df3)
def subtract(x, value):
return x - value
def add(x, **kwargs):
for key, value in kwargs.items():
x += value
return x
# **kwarg接收传递的字典参数
df6 = df5.apply(add, ag=1, ql=2, sd=3)
print(df6)
# value接收了传递的元组参数
df7 = df5.app