求逆序数
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
题目保证输入的数组中没有的相同的数字数据范围: 对于%50的数据,size<=10^4 对于%75的数据,size<=10^5 对于%100的数据,size<=2*10^5
思路一:暴力解法,直接遍历数组,简单粗暴
思路二:通过归并的思想求解,先分治再归并,类似于归并排序
具体可以看代码:
public class Solution {
int count = 0;
public int InversePairs(int [] array) {
if(array.length != 0 && array != null) {
int[] copy = new int[array.length];
mergeSort(array, copy, 0, array.length - 1);
}
return count;
}
public void mergeSort(int[] arr, int[] copy, int start, int end) {
if(start < end) {
int mid = (start + end) >> 1;
mergeSort(arr, copy, start, mid);
mergeSort(arr, copy, mid + 1, end);
merge(arr, copy, start, mid, end);
}
}
public void merge(int[] arr, int[] copy, int start, int mid, int end) {
//左边分组的启点
int start1 = start;
//右边分组的启点
int start2 = mid + 1;
//新数组中的索引
int index = start;
while(start1 <= mid && start2 <= end) {
if(arr[start1] > arr[start2] ) {
count = count + mid - start1 + 1;
copy[index++] = arr[start2++];
}else {
copy[index++] = arr[start1++];
}
}
while(start1 <= mid) {
copy[index++] = arr[start1++];
}
while(start2 <= end) {
copy[index++] = arr[start2++];
}
//将排序好的数组copy赋值给原数组,改变原数组中的顺序,为了方便计算逆序数
for(int i = start; i <= end; i++) {
arr[i] = copy[i];
}
}
}