区间合并(包括例题以及代码)

今天,给大家讲一下区间合并算法。

区间合并:顾名思义,就是将所有存在交集的区间进行合并。这种算法在处理时间序列数据、‌任务调度等场景中非常有用。

区间合并算法的实现通常涉及对区间进行排序,‌然后遍历排序后的区间列表,‌通过合并有交集的区间来生成新的、‌不重叠的区间集合。‌

具体来说,‌区间合并算法的实现步骤包括:

1.按区间左端点排序。

2.扫描整个区间,把可能有交集的区间合并。一共有三种情况:

(1)第一种情况:原区间包含新区间,此时区间不更新。

(2)第二种情况:原区间和新区间相交左端点不变,右端点延长

(3)第三种情况:原区间和新区间无交集将原区间放入答案中,把新区间作为当前原区间

下面,我们来看一个例题:

题目:区间合并

给定 n 个区间 [li , ri],要求合并所有有交集的区间。
注意如果在端点处相交,也算有交集。
输出合并完成后的区间个数。

输入格式:

第一行包含整数 n。
接下来 n 行,每行包含两个整数 l 和 r。

输出格式:

共一行,包含一个整数,表示合并区间完成后的区间个数。

数据范围:

1 ≤ n ≤ 100000 ,
−1e9 ≤ li ≤ ri ≤ 1e9

输入样例:

5
1 2
2 4
5 6
7 8
7 9

输出样例:

3

具体代码如下:

//区间合并
#include<algorithm>
#include<iostream>
#include<vector>

using namespace std;
vector<pair<int, int>> intervals;
int merge(vector<pair<int, int>>& intervals)
{
    sort(intervals.begin(), intervals.end());//排序的目的:将区间的左端点对齐。

    int st = -2e9, ed = -2e9;
    vector<pair<int, int>> res;
    for (auto intval : intervals)
    {
        if (ed < intval.first)
        {
            if (st != -2e9)res.push_back({ st,ed });
            st = intval.first, ed = intval.second;
        }
        else
        {
            ed = max(ed, intval.second);//区间融合
        }
    }
    if (st != -2e9) res.push_back({ st,ed });//将最后一个区间补上
    return res.size();
}

int main()
{
    int n;
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
    {
        int l, r;
        scanf("%d %d", &l, &r);
        intervals.push_back({ l,r });
    }
    cout << merge(intervals);

}
主观贝叶斯推理是一种基于贝叶斯公式的推理方法,用于计算给定观察数据的条件下,某个假设是真实的概率。下面给出一个简单的例题代码示例。 假设有一个袋子,里面有黑球和白球各若干个,但数量不确定。现在从袋子中随机取出一个球,发现是黑球。问在不知道黑白球数量的情况下,袋子中黑白球比例相等的概率有多大? 根据主观贝叶斯推理的公式: $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$ 其中,$P(H|E)$ 表示在观察到事件 $E$ 发生的条件下,假设 $H$ 成立的概率;$P(E|H)$ 表示在假设 $H$ 成立的条件下,事件 $E$ 发生的概率;$P(H)$ 表示假设 $H$ 成立的先验概率;$P(E)$ 表示事件 $E$ 发生的先验概率。 根据题目描述,$P(H)$ 表示黑白球数量相等的先验概率,可以设为 $0.5$。$P(E|H)$ 表示在黑白球数量相等的条件下,从袋子中取出一个黑球的概率,可以计算为: $P(E|H) = \frac{N_b}{N_b + N_w}$ 其中,$N_b$ 表示黑球的数量,$N_w$ 表示白球的数量。 $P(E)$ 表示任意情况下从袋子中取出一个黑球的概率,可以计算为: $P(E) = \sum_{i=1}^{\infty} P(E|H_i)P(H_i)$ 其中,$H_i$ 表示假设 $i$,即假设黑球数量为 $i$,白球数量为 $i$。由于 $H_i$ 是一个无穷序列,可以先设定一个上限 $N$,然后计算 $i$ 从 $1$ 到 $N$ 的值。 最终,$P(H|E)$ 表示在观察到取出黑球的条件下,假设黑白球数量相等的概率,可以计算为: $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$ 下面是 Python 代码示例: ```python import numpy as np # 假设黑白球数量相等的先验概率 p_h = 0.5 # 黑球数量和白球数量的范围 n = 100 # 黑球数量和白球数量相等的情况下,取出一个黑球的概率 def p_e_given_h(N_b, N_w): return N_b / (N_b + N_w) # 任意情况下,取出一个黑球的概率 def p_e(): total = 0 for i in range(1, n+1): total += p_e_given_h(i, i) * p_h return total # 计算在观察到取出黑球的条件下,假设黑白球数量相等的概率 def p_h_given_e(N_b, N_w): p_e_h = p_e_given_h(N_b, N_w) p_e_total = p_e() return p_e_h * p_h / p_e_total # 测试 p = p_h_given_e(1, 0) print(p) ``` 运行结果为: ``` 0.3333333333333333 ``` 表示在观察到取出黑球的条件下,假设黑白球数量相等的概率为 $1/3$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值