深度学习入门之pytorch——一维线性回归代码更新

这篇博客针对《深度学习入门之PyTorch》书中的一维线性回归代码进行了更新,以适配PyTorch的新版本。主要内容包括:Variable与Tensor的融合、.data与.detach()的区别以及零维张量的处理。文章指出,在新版PyTorch中,不再需要使用Variable,而是直接使用Tensor,并解释了如何安全地从Tensor中提取数据。此外,还强调了在训练循环中正确清零梯度的重要性,以避免'Nonetype'对象错误。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

入门pytorch书本《深度学习入门之pytorch》,首先学习一维线性回归的实现。书中代码
虽然书中的代码仍在维护,但是pytorch更新了部分函数,本文仅做一些修改,不做一维线性回归的讲解,具体实现可参考代码链接。

  1. Variable 与Tensor
    variable与tensor合并,旧版本的variable封装仍可以工作,新的tensor就不需要再用variable封装了,requires_grad为tensor的一个属性,默认为False,语句w = Variable(torch.randn(1), requires_grad=True),更改为w = torch.randn(1, requires_grad=True),对b的初始化操作相同。

  2. .data 与.detach()
    .data是tensor的一个属性,而.detach()是一个方法,0.4保留了.data,但是更推荐使用.detach()实现从tensor中提取数据转换为numpy,原因是.detach()更安全。两者都与tensor共享内存,且requires_grad=false,但是在调用tensor数据过程中,.detach()对tensor的更改会被检测到并报错,而.data不会报错,使得在后续autograd中出现错误且不易察觉。详细解析
    原代码中画图部分的.data改成.detach()

  3. 零维张量
    loss是零维张量,提取张量的数据由loss.data[0]更改为loss.item()

  4. w.grad.zero_()
    原文中先对loss反向传播了一次,然后写了重复多次训练的代码,笔者学习时将第一次loss反向传播省略,直接重复训练,导致报错,‘“Nonetype”object has no attribute ‘zero_’’,原因是系统将w的grad初始化为None,直接写for循环需要先将grad清零再反向传播,因此报错,需要在for 循环前进行一步反向传播,或者增加一步判断,当epoch大于0时再进行梯度清零

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值