- 博客(11)
- 收藏
- 关注
原创 python可视化
文章目录1. pyecharts1. pyechartshttps://pyecharts.org/#/zh-cn/render_images
2019-08-08 17:29:29 480
原创 Alfred数据分析项目实践笔记
ggplot是matplotlib的一种美化风格最后三行是调整一些plt显示的问题pd.concat是pandas数据组合,https://blog.csdn.net/mr_hhh/article/details/79488445 这篇博客有详细介绍,默认是下图组合方式。pandas字符串分割,把“-”两端分开,分成两列:原始:分割后:pandas中loc用于提取...
2019-08-07 17:19:12 736
原创 机器学习之类别不平衡问题
1. 再缩放以线性分类器为例,决策规则为:公式(1)然而,当训练集中正反例的数目不同时,令m+表示正例数目,m-表示反例数目,则观测几率是m+/m-,由于我们通常假设训练集是真实样本总体的无偏采样,因此观测几率就代表了真实几率。于是,只要分类器的预测几率高于观测几率就应判定为正例,即:公式(2)但是,我们的分类器是基于公式(1)进行决策,因此,需对其预测值进行调整,使其在基于公式(1)决...
2019-07-30 17:32:15 466
原创 机器学习之多分类学习
主要介绍拆分策略:1. “一对一”(OvO)和“一对其余”(OvR)“一对一”:将数据集中N个类别两两配对,从而产生N(N-1)/2个二分类任务。在测试阶段,新样本将同时提交给所有分类器,于是我们得到N(N-1)/2个分类结果,最终结果可通过投票产生:即把预测得最多的类别作为最终分类结果。“一对其余”:每次将一个类的样例作为正例、所有其他类的样例作为反例来训练N个分类器。在测试时若仅有一个分...
2019-07-30 17:04:38 1696
原创 机器学习模型评估与选择
1. 经验误差与过拟合2. 评估方法2.1 留出法(hold-out)2.2 交叉验证法(cross validation)2.3 自助法(bootstrapping)3. 性能度量3.1 错误率与精度3.2 查准率(precision)、查全率(recall)与F13.3 ROC与AUC3.4 代价敏感错误率与代价曲线1. 经验误差与过拟合学习器在训练集上的误差称为“训练误差”(train...
2019-07-29 22:56:30 209
转载 机器学习笔记之分类算法(三)决策树
转载自:https://www.leiphone.com/news/201705/vS6CaMI8bfSIjrlk.html我们知道,在机器学习中有两类十分重要的问题,一类是分类问题,一类是回归问题。我们今天所要探讨的就是在分类和回归问题中所用到的一种非常基本的方法,叫决策树。决策树也是重要的标签学习方法。这篇文章里面的部分内容来自于 AI 慕课学院的《机器学习理论与实战高级特训班》课程笔记。...
2019-07-19 15:42:27 816
转载 机器学习笔记之分类算法(二)朴素贝叶斯
公式推导:优点:(1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。(2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。(3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。缺点:(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型给定输出类别的情况下...
2019-07-15 17:00:37 465
原创 机器学习笔记之分类算法(一)逻辑回归
1. 线性回归和逻辑回归(LR)线性回归可以很好的解决回归问题,但是针对分类问题效果不佳。因为线性回归的输出值是不确定范围的,无法很好的一一对应到若干分类中。为了解决上述问题,逻辑回归诞生了。通过在线性回归模型中引入Sigmoid函数,将线性回归的不确定范围的连续输出值映射到(0,1)范围内,成为一个概率预测问题。线性回归逻辑回归sigmoid函数:为什么采用...
2019-07-12 17:31:08 449
原创 SQL进阶语法笔记
通配符LIKEWebsites表格数据:idnameurlalexacountry1Googlehttps://www.google.cm/1USA2淘宝https://www.taobao.com/13CN3菜鸟教程http://www.runoob.com/4689CN4微博http://weibo.com/20...
2019-07-10 17:31:07 283
原创 机器学习笔记之回归算法(一)线性回归
1. 假设函数2. 损失函数根据损失函数求解最优的假设函数(θ值),即求解一个凸优化问题。即对损失函数求导,令导数为0,求解θ值。3. 梯度下降算法从初始的θ值开始按照以下的形式不断更新,即从初始θ(随机初始化)按照梯度方向(使J下降最快的方向)变化。α称为学习率或步长。其中偏导的部分:对于单个样本:上式称为最小均方算法(Least mean square,LMS算法)。...
2019-07-10 16:12:21 302
原创 SQL基础语法笔记
SQL基础语法SELECT新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入SELECT新的改变我们对Mar...
2019-07-08 10:53:39 146
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人