机器学习之类别不平衡问题

本文探讨了机器学习中类别不平衡问题的处理方法,包括再缩放、欠采样、过采样和阈值移动。再缩放是通过调整预测值以适应不平衡数据的策略,而欠采样和过采样则是改变样本数量来平衡两类数据。阈值移动则是在决策过程中直接调整分类阈值。这些方法在处理不平衡数据集时能够提高分类器的性能。
摘要由CSDN通过智能技术生成
1. 再缩放

以线性分类器为例,决策规则为:
公式(1)在这里插入图片描述
然而,当训练集中正反例的数目不同时,令m+表示正例数目,m-表示反例数目,则观测几率是m+/m-,由于我们通常假设训练集是真实样本总体的无偏采样,因此观测几率就代表了真实几率。于是,只要分类器的预测几率高于观测几率就应判定为正例,即:
公式(2)在这里插入图片描述
但是,我们的分类器是基于公式(1)进行决策,因此,需对其预测值进行调整,使其在基于公式(1)决策时,实际是在执行公式(2)。要做到这一点只需令
公式(3)
在这里插入图片描述
这就是不平衡学习的一个基本策略——“再缩放”。

但是,再缩放的思想虽然简单,但是实际操作却不平凡,主要因为“训练集是真实样本总体的无偏采样”这个假

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值