题目
给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例:
输入: [1,2,3,null,5,null,4]
输出: [1, 3, 4]
解释:
1 <—
/ \
2 3 <—
/\ / \
null 5 null 4 <—
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-tree-right-side-view
解题
DFS解法
看到题目第一反应就是用深度优先搜索,沿着树的深度一直遍历出最右边的节点。本来想的很简单,从第一层开始一直返回右节点的右节点的右…,但是仔细一想,当某一层的右节点没有的时候,这层的最右可能就是第一层的左子树下面的,这时候就需要回溯,一直到这层的左子树的右节点的右节点的右…如下图示例,红色的结点即为右视图看到的结点,箭头表示遍历过程:
这个思路自己能想到,但是代码自己没想通,其实只是少想到了一个条件,就是回溯的时候怎么确定到哪个点又是下一层的最右节点?这个判断条件的关键就是加一个记录已计算到哪一层的最右节点的层数depth(res.size)。
这样回溯的时候到还未记录过的那一层depth+1层的节点时很明显那个就是那一层的最右节点(因为我们深度遍历是先右后左)
回溯的节点层数是递归一次,层数加一这样实时计算出来的。
代码参考 Jacky:优先右子树的深度遍历 清晰高效的递归解法实现的太妙了。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
List<Integer> res = new ArrayList<>();
int deepest = 0;//当前遍历到哪一层
public List<Integer> rightSideView(TreeNode root) {
//递归
dfs(root,0);
return res;
}
private void