- 博客(2)
- 收藏
- 关注
原创 熵、交叉熵和散度
KL 散度(KL Divergence),也叫相对熵,是用概率分布 𝑞 来近似 𝑝 时所造成的信息损失量.KL 散度是按照概 率分布𝑞的最优编码对真实分布为𝑝的信息进行编码,其平均编码长度(即交叉 熵)𝐻(𝑝, 𝑞) 和 𝑝 的最优平均编码长度(即熵)𝐻(𝑝) 之间的差异.对于离散概率 分布𝑝和𝑞,从𝑞到𝑝的KL散度定义为。KL散度总是非负的,KL(𝑝, 𝑞) ≥ 0,可以衡量两个概率分布之间的距离.KL 散度只有当𝑝 = 𝑞时,KL(𝑝, 𝑞) = 0.如果两个分布越接近,KL散度越小;
2022-12-02 12:39:02 636 2
翻译 Cycle-Dehaze: 用于单图像增强的CycleGan
为了得到高分辨率的去雾图像,我们用去雾后的低分辨率图像改变了拉普拉斯金字塔的顶层,并像往常一样进行拉普拉斯放大处理。循环一致性损失,计算未配对图像到图像转换任务中原始图像和循环图像之间的L1-范数。然而,由于模糊图像大多是严重损坏的,因此计算出的原始图像和循环图像之间的损失不足以恢复所有的纹理信息。循环感知一致性损失旨在通过查看从VGG16体系结构的第2和第5池层提取的高和低层特征的组合来保持原始图像结构。的约束下,给出了循环感知一致性损失的表达式,其中(X,Y)是模糊和真实图像的未配对图像集,
2022-11-24 09:35:42 1637 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人