熵、交叉熵和散度
KL 散度(KL Divergence),也叫相对熵,是用概率分布 𝑞 来近似 𝑝 时所造成的信息损失量.KL 散度是按照概 率分布𝑞的最优编码对真实分布为𝑝的信息进行编码,其平均编码长度(即交叉 熵)𝐻(𝑝, 𝑞) 和 𝑝 的最优平均编码长度(即熵)𝐻(𝑝) 之间的差异.对于离散概率 分布𝑝和𝑞,从𝑞到𝑝的KL散度定义为。KL散度总是非负的,KL(𝑝, 𝑞) ≥ 0,可以衡量两个概率分布之间的距离.KL 散度只有当𝑝 = 𝑞时,KL(𝑝, 𝑞) = 0.如果两个分布越接近,KL散度越小;
原创
2022-12-02 12:39:02 ·
633 阅读 ·
2 评论