题意 :
有一个n*m地图,有k个位置是点亮的,有4个移动方向,每次可以移动到相邻的点亮位置,每次站在初始被点亮某个位置,暂时使某行或该某列全部点亮,花费为1,下一次使用时,上一次暂时点亮被熄灭。
算法 :
最短路(好多人都拆点做,蒟蒻只会暴力….), 以K个在初始就被点亮的点建图,如果有在四联通下相邻的灯则两点之间权为0,如果两点之间横/纵坐标相差不超过2,也就是说相隔一行/列,则两点之间权为1,由于直接连边会导致MLE, 所以在spfa的时候处理连边即可。
Hint :
若
(n,m)
在初始未被点亮,则加入一个点(n + 1, m + 1)
理解为强制点亮原图终点。
代码 :
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
int rd() {
int x = 0; char c = getchar();
while (c > '9' || c < '0') c = getchar();
while (c >= '0' && c <= '9') x = x * 10 + c - 48, c = getchar();
return x;
}
const int N = 1e4 + 10;
const int inf = 0x7f7f7f7f;
int dis[N], x[N], y[N], n, m, K;
bool fg, vis[N];
int spfa() {
queue <int> q;
memset(dis, 0x7f, sizeof dis);
q.push(1), vis[1] = 1, dis[1] = 0;
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = 1; i <= K; i ++) {
if (i == u) continue;
int w = inf;
int dx = abs(x[i] - x[u]), dy = abs(y[i] - y[u]);
if (dx + dy == 1) w = 0;
else if (dx <= 2 || dy <= 2) w = 1;
if (dis[i] > dis[u] + w) {
dis[i] = dis[u] + w;
if (!vis[i]) vis[i] = 1, q.push(i);
}
}
vis[u] = 0;
}
return dis[K] == inf ? -1 : dis[K];
}
int main() {
n = rd(), m = rd(), K = rd();
for (int i = 1; i <= K; i ++) {
x[i] = rd(), y[i] = rd();
fg |= (x[i] == n && y[i] == m);
}
if (!fg) x[++K] = n + 1, y[K] = m + 1;
printf("%d\n", spfa());
return 0;
}