使用C语言实现二维,三维绘图算法(2)-解析曲面的显示

---- 引言----

每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其实想想, Win32中既然存在画线画点函数, 利用计算机图形学的知识, 我们用可以用纯C调用Win32实现三维绘图, 完全不用借助OpenGL和DirectX, 这有重复造轮子的嫌疑, 但是自己动手实现一遍, 毕竟也是有意义的.

[效果演示]

原始效果(100条浮动曲线)

加密以后的效果(200条浮动曲线)

[浮动水平线法绘图过程]

固定一个y值按步长变换给定一个x值, 从而可计算出平面截线一个点的z坐标值. 将改点投影到xoy平面上, 然后再变换到屏幕上. 如果是曲线端点要填充边界值. 接着检验此点的可见性,并用1表示上方可见, 0表示不可见, -1表示下方可见. 可见性检测就是用当前点的y值与上下浮动水平线数组中相应的元素值进行比较,y值大于上水平线数组中元素值或小于下水平线数组中元素值, 则当前点可见, 否则不可见. 往下再计算同一平面截线的另一点, 和上面点一样, 先投影到坐标平面上, 再变换到屏幕上. 先前的点叫紧前点, 当前的点为当前点. 紧前点和当前点的可见性主要有下面一些可能情形:

[编程实现要点]

曲面函数的定义

float SurfaceFun(float X, float Y)
{
    float w1, w2, w3, FV;
    w1=4*(X-2)*(X-2) + (Y-4)*(Y-4) - 1;
    w2=(X-5)*(X-5)/9 + 4*(Y-2)*(Y-2) - 1;
    w3=(X-5)*(X-5)/9 + 4*(Y-6)*(Y-6) - 1;
    
    if(w1>85) w1=85;
    if(w2>85) w2=85;
    if(w3>85) w3=85;    
    
    FV=w1*w1*exp(-w1) + w2*w2*exp(-w2) + w3*w3*exp(-w3);
    
    return(FV);
    
}


绘制曲面函数

void DrawSurface()
{
    int Xe, Ye, Ln, Pt, XPre, YPre, XCur, YCur, Xi, Yi;
    int *pi, LimY, VisCur, VisPre;
    float X, Y, Z;
    
    LimY=GetWindowHeight();
    SetLineColor(BLUE); 

    for(Ln=0; Ln<=LNo; ++Ln)
    {
        Y=Y2-Ln*IncY;
        X=X1;
        Z=SurfaceFun(X,Y);
        CalcuProject(X, Y, Z);
        XPre = 0.5 + (XProj-F1)*EchX + C1;
        YPre = 0.5 + (YProj-F3)*EchY + C3;
        
        FillEdge(XPre, YPre, Xd, Yd);
        
        VisPre = VisibilityTest(XPre, YPre);
        
        for(Pt=0; Pt<=PNo; ++Pt)
        {
            X=X1+Pt*IncX;
            Z=SurfaceFun(X,Y);
            CalcuProject(X, Y, Z);
            XCur = 0.5 + (XProj-F1)*EchX + C1;
            YCur = 0.5 + (YProj-F3)*EchY + C3;
            VisCur = VisibilityTest(XCur, YCur);
            
            if( (HMax[XCur]==0) || (HMin[XCur]==LimY) ) VisCur = VisPre;
            
            if(VisCur == VisPre)
            {
                if( (VisCur==1) || (VisCur==-1) )
                {
                    if(0<=XCur)
                        PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-YCur);
                    else if(0<=YCur)
                        PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YCur);
                    else
                        PlotLine(Xi, LimY-60-YPre, XPre, LimY-60-YPre);
                    
                    HorizonInc(XPre, YPre, XCur, YCur);
                }
            }
            else    // VisCur!=VisPre
            {
                if(VisCur==0)
                {
                    if(VisPre == 1)
                    {
                        pi = Inter(XPre, YPre, XCur, YCur, HMax);
                        Xi = *pi;
                        Yi = *(pi+1);
                    }
                    else
                    {
                        pi = Inter(XPre, YPre, XCur, YCur, HMin);
                        Xi = *pi;
                        Yi = *(pi+1);
                    }
                    
                    if(0<=Xi)
                        PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-Yi);
                    else if(0<=Yi)
                        PlotLine(XPre, LimY-60-Yi, XPre, LimY-60-Yi);
                    else
                        PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YPre);
                    
                    HorizonInc(XPre, YPre, Xi, Yi);
                }
                else    
                {
                    if(VisCur == 1)
                    {
                        if(VisPre == 0)  
                        {
                            pi = Inter(XPre, YPre, XCur, YCur, HMax);
                            Xi = *pi;
                            Yi = *(pi+1);  
                            
                            if(0<=Xi)
                                PlotLine(Xi, LimY-60-Yi, XCur, LimY-60-YCur);       
                            else if(0<=Yi)
                                PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur);
                            else
                                PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur);
                            
                            HorizonInc(Xi, Yi, XCur, YCur);   
                        }
                        else   
                        {
                            pi = Inter(XPre, YPre, XCur, YCur, HMin);
                            Xi = *pi;
                            Yi = *(pi+1);  
                            
                            if(0<=Xi)
                                PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-Yi);       
                            else if(0<=Yi)
                                PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-Yi);
                            else
                                PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YPre);
                            
                            HorizonInc(XPre, YPre, Xi, Yi);    
                            
                            pi = Inter(XPre, YPre, XCur, YCur, HMax);
                            Xi = *pi;
                            Yi = *(pi+1);  
                            
                            if(0<=Xi)
                                PlotLine(Xi, LimY-60-YCur, XCur, LimY-60-YCur);       
                            else if(0<=Yi)
                                PlotLine(XCur, LimY-60-Yi, XCur, LimY-60-YCur);
                            else
                                PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur);
                            
                            HorizonInc(Xi, Yi, XCur, YCur);
                        }
                    }
                    else    // VisCur!=0, VisCur!=1
                    {
                        if(VisPre == 0)  
                        {
                            pi = Inter(XPre, YPre, XCur, YCur, HMin);
                            Xi = *pi;
                            Yi = *(pi+1);  
                            
                            if(0<=Xi)
                                PlotLine(Xi, LimY-60-YCur, XCur, LimY-60-YCur); 
                            else if(0<=Yi)
                                PlotLine(XCur, LimY-60-Yi, XCur, LimY-60-YCur);
                            else
                                PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur);
                            
                            HorizonInc(Xi, Yi, XCur, YCur);   
                        }
                        else    // VisCur!=0, VisCur!=1, VisPre!=0
                        {
                            pi = Inter(XPre, YPre, XCur, YCur, HMax);
                            Xi = *pi;
                            Yi = *(pi+1);  
                            
                            if(0<=Xi)
                                PlotLine(XPre, LimY-60-YPre, Xi, LimY-60-Yi);      
                            else if(0<=Yi)
                                PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-Yi);
                            else
                                PlotLine(XPre, LimY-60-YPre, XPre, LimY-60-YPre);
                            
                            HorizonInc(XPre, YPre, Xi, Yi);    
                            
                            pi = Inter(XPre, YPre, XCur, YCur, HMin);
                            Xi = *pi;
                            Yi = *(pi+1);  
                            
                            if(0<=Xi)
                                PlotLine(Xi, LimY-60-Yi, XCur, LimY-60-YCur);      
                            else
                                PlotLine(XCur, LimY-60-YCur, XCur, LimY-60-YCur);
                            
                            HorizonInc(Xi, Yi, XCur, YCur);
                        }                        
                    }
                }
            }
            
            VisPre = VisCur;
            XPre   = XCur;
            YPre   = YCur;
        }
        
        FillEdge(XCur, YCur, Xg, Yg);
    }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值