
人工智能综合
文章平均质量分 94
针对有些用户需要全部人工智能资源(如机器学习、深度学习、图像处理、NLP等全部资源),本栏对全部AI专栏汇总。包括(机器学习、深度学习、NLP、图像处理、AI和python、时间序列、torch、强化学习、对抗网络),若是分开订阅,每篇文章约0.5元,这里打包订阅,每篇文章0.22元。
优惠券已抵扣
余额抵扣
还需支付
¥199.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
无水先生
擅长数学,能熟练应用泛函分析、统计学、随机过程、逼近论、微分几何、非欧几何(双曲、共形)等数学理论,有数学建模能力。从事图像处理二十年以上,从事人工智能行业10年以上;在船舶、通信、铁路、教育等行业开发软件产品。
展开
-
100 个 NLP 面试问题
对于技术磨练中,其中一项很酷的技能培训是提问。不知道答案并没有多大的错;错就错在不谷歌这些疑问。本篇就是在面试之前,您将此文档复制给自己,做一个系统的模拟实战。原创 2024-02-02 08:39:53 · 3755 阅读 · 0 评论 -
循环生成对抗网络(CycleGAN)
循环生成对抗网络(CycleGAN)是一种训练深度卷积神经网络以执行图像到图像翻译任务的方法。网络使用不成对的数据集学习输入和输出图像之间的映射。原创 2023-12-31 19:12:30 · 7322 阅读 · 2 评论 -
使用主题模型和古老的人类推理进行无监督文本分类
— Transformer 和 LLM 速度慢且成本高。使用 OpenAI 的 API 需要花费大量金钱,而且由于速度相当慢而可能不切实际。您当然可以自行托管一个较小的变压器模型,但如果您希望事情变得敏捷且响应迅速(这通常是生产中的要求),它仍然需要大量计算资源。在这种情况下,我想说主题模型是一个非常合理的折衷方案。它们可能不如零样本变压器模型那么智能,并且您将必须做更多的体力劳动才能在实践中使用它们,但它们可以让您对过程进行更细粒度的控制,并给出更可解释的结果,更不用说性能优势原创 2024-01-12 19:56:29 · 2755 阅读 · 1 评论 -
【openGL教程 09 】openGL系统术语解释
总的来说,OpenGL 是一个非常强大的工具,能够为开发者提供创建高性能、高质量图形的能力。尽管它可能需要一些时间来学习,但是它在许多领域中都被认为是一个重要的技能。原创 2024-02-23 01:04:38 · 3123 阅读 · 4 评论 -
【音频处理】音频压缩进展综述
关于音频处理,从2017年的一篇论文《神经离散表示学习》开始作为标杆。以后相继的RVQ为关键字的论文大量出现。这篇是关于RVQ和GAN级联的描述方法。其中的看点我且不论 RVQGAN做的如何,就关于这个行业的发展脉络是可见一般的。现在引入作为参考。原创 2024-04-24 11:04:24 · 3052 阅读 · 0 评论 -
Python 装饰器可以将代码减少一半
这里,我将与您分享一些令人惊叹的 Python 装饰器,它们可以将您的代码减少一半。听起来好得令人难以置信,对吧?好吧,让我向您展示它们是如何工作的以及为什么应该在项目中使用它们。原创 2024-01-13 09:28:50 · 2783 阅读 · 0 评论 -
强化学习和Q-Learning的综合研究
在我今天的中等帖子中,我将教您如何实现 Q-Learning 算法。但在此之前,我将首先解释 Q-Learning 背后的想法及其局限性。请务必具备一些强化学习 (RL) 基础知识。否则,请查看我之前关于 RL 背后的直觉和关键数学的文章。原创 2024-06-20 19:46:10 · 2826 阅读 · 0 评论 -
深度学习和NLP中的注意力和记忆
深度学习的最新趋势是注意力机制。在一次采访中,现任 OpenAI 研究总监的 Ilya Sutskever 提到,注意力机制是最令人兴奋的进步之一,而且它们将继续存在。这听起来很令人兴奋。但什么是注意力机制?原创 2024-07-10 13:33:47 · 3220 阅读 · 0 评论 -
协调尺度:特征缩放在机器学习中的重要作用
特征缩放是机器学习和数据分析预处理阶段的关键步骤,在优化各种算法的性能和效率方面起着至关重要的作用。本文深入探讨了特征缩放的本质,探讨了其不同的方法,强调了其重要性,并考虑了其在机器学习模型中的应用的实际意义。原创 2024-02-16 00:17:12 · 4269 阅读 · 4 评论 -
机器学习指南:如何学习机器学习?
因此,无论您是刚入门的新手还是想要升级的专业人士,本指南都是您进入机器学习世界的激动人心的旅程的伴侣!准备好解开智能计算机的秘密,看看你们可以一起创造哪些令人惊奇的东西。原创 2024-01-09 14:23:35 · 3913 阅读 · 3 评论 -
准确度和精密度之间有什么区别?
在这篇文章中,当我们继续我的系列文章,标题为“有什么区别......?今天,我们将探讨统计学和数据科学中的两个重要术语:准确性和精确度。这些概念对于理解测量和预测的质量至关重要。通过揭示准确性和精确度之间的差异,我们可以获得对数据分析和解释世界的宝贵见解。因此,让我们深入研究并揭示准确度和精确度之间的区别。原创 2024-08-08 05:27:02 · 2521 阅读 · 0 评论 -
【文本到上下文 #8】NLP中的变形金刚:解码游戏规则改变者
欢迎来到我们对不断发展的自然语言处理 (NLP) 领域的探索的第 8 章。在本期中,我们将重点介绍一项重塑 NLP 格局的突破性创新:Transformers。在我们之前对 seq2seq 模型、编码器-解码器框架和注意力机制的讨论之后,我们现在开始了解 Transformer 如何彻底改变语言任务的方法。原创 2024-02-02 06:39:00 · 2772 阅读 · 0 评论 -
高斯过程的数学理解
G澳大利亚的过程是有益的,特别是当我们有少量数据时。当我在制造业担任数据科学家时,我们的团队使用这种算法来揭示我们接下来应该进行哪些实验条件。但是,此算法不如其他算法流行。在这篇博客中,我将通过可视化和 Python 实现来解释高斯过程 [1] 的数学背景。原创 2024-07-01 16:39:46 · 3124 阅读 · 2 评论 -
语言模型的校准技术:增强概率评估
语言模型,尤其是大型语言模型 (LLM),凭借其理解和生成类人语言的能力,彻底改变了人工智能领域。这些模型不仅能够在零样本设置下或通过定制提示执行各种任务,而且它们的灵活性和多样性也使它们在多个领域中非常有用。原创 2024-06-02 22:19:25 · 2948 阅读 · 1 评论 -
自然语言处理(02/10):自然语言处理任务和应用程序
在广阔的人工智能领域,自然语言处理 (NLP) 是一个迷人而充满活力的领域。NLP 弥合了计算机和人类语言之间的鸿沟,使机器能够理解、解释和生成类似人类的文本。这项变革性技术具有深远的影响,影响着我们日常生活的各个行业和方方面面。在这篇博文中,我们将探讨关键的 NLP 任务及其多样化的应用,展示语言处理的非凡能力。原创 2024-02-02 14:14:01 · 3600 阅读 · 0 评论 -
通过强化学习彻底改变大型数据集特征选择
了解强化学习如何改变机器学习模型的特征选择。通过实际示例和专用的 Python 库了解这种创新方法的过程、实现和好处。原创 2024-05-31 14:00:40 · 3670 阅读 · 2 评论 -
终极指南:RNNS、Transformers 和 Diffusion 模型
作为广泛使用这些工具和模型的人,我的目标是解开 RNN、Transformer 和 Diffusion 模型的复杂性和细微差别,为您提供详细的比较,为您的特定需求提供正确的选择。原创 2024-07-02 23:05:28 · 3670 阅读 · 2 评论 -
迈向生成式几何 AI
近年来,能动人工智能取得了显著的进步,使机器能够生成图像、文本甚至音乐。然而,仍然缺少一些数据模式。那就是几何事物的生成。本篇注意这个事情并给出观点。原创 2024-03-18 14:56:59 · 3141 阅读 · 11 评论 -
彻底改变单词嵌入和文本分类
2016 年由 Facebook 的 AI Research (FAIR) 团队推出的 FastText 已迅速成为自然语言处理 (NLP) 领域的基石。这种创新的词嵌入和文本分类方法以其效率和有效性而著称,特别是对于具有丰富形态特征的语言以及需要在粒度级别上理解句法和语义细微差别的场景。本文深入探讨了 FastText 的起源、技术基础、优势、应用和局限性,全面概述了它对 NLP 的影响。原创 2024-02-14 00:45:24 · 2842 阅读 · 0 评论 -
线性判别分析(LDA)
LDA 是一种监督降维和分类技术。其主要目的是查找最能分隔数据集中两个或多个类的特征的线性组合。LDA 的主要目标是找到一个较低维度的子空间,该子空间可以最大限度地区分不同类别,同时保留与歧视相关的信息。原创 2024-02-12 21:32:02 · 3241 阅读 · 2 评论 -
CoShNet:使用复数改进神经网络
本文题为“CoShNet:使用Shearlets的混合复杂值神经网络”,提出了在混合神经网络中使用复杂函数的方法。如果你对这些话感到非常困惑,在本文中,我将解释混合神经网络的概念,以及如何使用它们来改进传统的卷积神经网络。然后,我们将介绍如何使用复杂函数来进一步提高这些模型的性能。这将是一个非常有趣的过程。原创 2024-05-23 00:51:36 · 3095 阅读 · 0 评论 -
使用 Astra DB、LangChain 和 Vercel 构建维基百科聊天机器人
你有多少次问谷歌一个问题,只是为了得到一个维基百科的链接,需要你点击、加载网站并滚动才能找到答案?那么自动问题搜索又是如何呢?原创 2024-02-04 09:56:58 · 2720 阅读 · 0 评论 -
掌握 Python 异步编程:综合指南
本综合指南旨在阐明 Python 异步编程的复杂性。它面向初学者和经验丰富的程序员,旨在提供对异步编程模型及其在 Python 中的实际应用的透彻理解。原创 2024-01-19 16:34:56 · 3010 阅读 · 0 评论 -
【机器学习高级】强化学习综述
强化学习是一种强大的方法,可以帮助人工智能 (AI) 系统在看不见的环境中实现最佳结果。他们从每个行动的反馈中学习,并自我发现实现最终结果的最佳处理路径。该算法还能够延迟满足。最好的整体策略可能需要短期的牺牲,因此他们发现的最佳方法可能包括一些惩罚或一路回溯。原创 2024-05-23 00:47:41 · 3621 阅读 · 0 评论 -
Simpy简介:python仿真模拟库-03/5
在过去的两篇文章中,我们了解了 simpy 的基础知识、声明变量和处理表达式。值得注意的例子包括评估导数和积分。现在,让我们继续使用函数。原创 2024-01-10 12:03:09 · 3403 阅读 · 1 评论 -
【 OpenGL 教程07 】在 OpenGL 中读取纹理缓冲区
纹理是的object不是buffer,而是特定类型的对象。 OpenGL 术语中进行这种区分是为了消除任何混淆。纹理对象如容器,它包含数据存储buffer,同样的,缓冲区对象也包含数据存储buffer。本文将对此诸多概念拨云见日,指出上山之道路,不再为困。原创 2024-02-22 10:30:58 · 3307 阅读 · 0 评论 -
使用 Python 进行贝叶斯优化
贝叶斯优化是一种先进的技术,用于优化评估成本高昂的函数。该策略为全局优化提供了原则性策略,强调探索(尝试新领域)和开发(尝试看起来有前途的领域)之间的平衡。原创 2024-01-06 06:34:46 · 6130 阅读 · 0 评论 -
基尼杂质与基尼重要性与平均减少杂质的讨论
基尼系数是信息熵的泰勒级数简化版。因此,信息熵和基尼系数所表述的内涵是一致的。而绝对纯净的事物,信息熵(或基尼系数)是零,不纯的事物,基尼系数增加,但也不会超过0.5,因此,基尼系数是范围在0到0.5的纯洁度度量。原创 2024-02-17 11:18:20 · 3149 阅读 · 0 评论 -
数据科学统计面试问题 -40问
正如 Josh Wills 曾经说过的那样,“数据科学家是一个比任何程序员都更擅长统计、比任何统计学家都更擅长编程的人”。统计学是数据科学中处理数据及其分析的基本工具。它提供了工具和方法,可帮助数据科学家获得见解并解释大量数据。仅仅掌握数据科学工具和语言是不够的。您还应该对某些核心统计概念和基础知识有深刻的理解。牢记这一点,这里列出了 40 个最常见的统计数据科学面试问题和答案。它将帮助您刷新对统计学关键方面的记忆,并帮助您准备包括数据科学和机器学习在内的工作面试。原创 2024-07-24 18:10:21 · 2540 阅读 · 0 评论 -
了解 K-Means 聚类的工作原理(详细指南)
K-means 的目标是将一组观测值划分为 k 个聚类,每个观测值分配给均值(聚类中心或质心)最接近的聚类,从而充当该聚类的代表。原创 2024-08-17 09:20:14 · 2931 阅读 · 1 评论 -
深入浅出談 隐马尔可夫的概念(2/ 2)-- 训练理论
在许多机器学习的章节中,常常遇见 HMM ,往往看到它的数学式子后,就当没看到似的跳过去了,其实它的基础理论并不难,尤其是 Markov Chain 在高中数学课本就已经出现过了,但…那么久远的事,相信大家都忘得差不多了,现在一起来回顾一下吧!!在前面 part 2 有提醒大家慎入唷! 有满满多出来的数学式,要 hold 住呀!底下我们分成几个部分来说明和算法。原创 2024-06-16 00:05:08 · 2635 阅读 · 0 评论 -
了解线性回归、岭回归和套索回归
在本文中,我们将深入探讨机器学习中两种基本正则化技术的基础和应用:Ridge 回归和 Lasso 回归。这些方法在缓解过拟合方面起着至关重要的作用,从而增强了模型对新数据的泛化能力。原创 2024-08-06 08:31:28 · 2265 阅读 · 0 评论 -
在 OpenGL 4 中替换 glMatrixMode()?
OpenGL 版本 3.x和OpenGL 版本 4.x的版本有很大不同,在OpenGL 版本 3.x中使用的glMatrixMode在OpenGL 版本 4.x已经弃用,那么如何实现原glMatrixMode实现功能呢?是使用统一变量完成的。本篇将讨论如何在OpenGL 版本 4.x中替换OpenGL 版本 3.x中glMatrixMode的功能。原创 2024-05-03 13:29:18 · 2974 阅读 · 0 评论 -
从马尔可夫奖励过程到马尔可夫决策到强化学习【01/2】
关于马尔可夫过程,如何将马尔可夫决策转化成决策依据,这里介绍的基本的思想路径,为读者将来设计和应用决策模型提供理论上的参考。原创 2023-12-31 12:34:07 · 5103 阅读 · 0 评论 -
毫无疑问,交叉熵就是您所需要的…
在快速发展的机器学习领域,深度神经网络已被证明在解决各个领域的复杂任务方面非常强大。然而,这些模型令人印象深刻的性能是有代价的——需要大规模、精确注释的数据集。不幸的是,这些数据集通常容易出现噪声标签,这会严重阻碍训练模型的性能。原创 2024-01-12 10:09:24 · 2779 阅读 · 0 评论 -
奠定基础:用于机器学习的微积分、数学和线性代数
坚实的数学和线性代数基础对于任何潜入机器学习的人来说都是必不可少的。了解用于优化的微积分、用于处理数据不确定性的概率和统计以及用于高效数据操作的线性代数是释放机器学习算法全部潜力的关键。Python 凭借其丰富的库生态系统,提供了一个强大的平台,可以在机器学习的背景下实现和试验这些数学概念。祝您学习愉快!原创 2024-01-30 16:29:59 · 2844 阅读 · 0 评论 -
使用这种简单的 Python 技术使您的代码更具可扩展性(改进中。。)
如果您已经熟悉传统的 Python 类,乍一看,ABC 似乎是一个陌生的概念。本质上,它们允许您定义一组必须由子类实现的方法,从而在代码中强制执行特定的结构。Python 中的抽象基类 (ABC) 提供了一种定义接口和抽象方法的结构化方法,为子类提供了可遵循的蓝图。原创 2024-04-23 11:22:42 · 1836 阅读 · 0 评论 -
【计算几何】确定两条连续线段向左转还是向右转
如果是作图,或者是判别小车轨迹。为了直观地了解,从当前点到下一个点过程中,什么是左转、什么是右转,或者方向不变,这在现场实时运算中是很重要的。本篇描述其快速算法。原创 2024-02-11 12:40:53 · 3074 阅读 · 3 评论 -
探索渡边赤池信息准则 (WAIC):统计模型选择的范式转变
在不断发展的统计建模和机器学习领域,寻求最佳模型选择仍然是一个基石。渡边-赤池信息准则 (WAIC) 作为贝叶斯分析的重要工具而出现,为模型评估提供了全新的视角。本文旨在揭示 WAIC 的细微差别,探讨其方法、意义、优势和潜在局限性。原创 2024-01-05 09:28:03 · 5890 阅读 · 1 评论 -
【Transformer-Hugging Face手册 08/10】使用脚本进行训练
除了 Transformers 笔记本之外,还有一些示例脚本演示如何使用 PyTorch、TensorFlow 或 JAX/Flax 为任务训练模型。原创 2024-02-08 18:28:26 · 2851 阅读 · 0 评论