习题思考 1. 对抗神经网络 generator:主要是从训练数据中产生相同分布的samples,对于输入x,类别标签y,在生成模型中估计其联合概率分布。 discriminator:判断输入的是真实数据还是generator生成的数据,即估计样本属于某类的条件概率分布。它采用传统的监督学习的方法。 在实际训练中使用的损失函数为生成器使用的损失函数是 max G {−(1−y)log(1−D(G(z)))}