Chukai123
码龄4年
  • 367,908
    被访问
  • 198
    原创
  • 4,817
    排名
  • 658
    粉丝
关注
提问 私信

个人简介:人生苦短,且行且珍惜!

  • 加入CSDN时间: 2018-11-13
博客简介:

斯人若彩虹,遇上方知有!

博客描述:
主要用于记录自己的学习点滴!
查看详细资料
  • 5
    领奖
    总分 1,620 当月 75
个人成就
  • 获得389次点赞
  • 内容获得374次评论
  • 获得1,595次收藏
创作历程
  • 20篇
    2022年
  • 21篇
    2021年
  • 67篇
    2020年
  • 117篇
    2019年
成就勋章
TA的专栏
  • 个人简介
  • Pytorch
    26篇
  • 论文翻译
    21篇
  • 免疫
    10篇
  • Pytorch深度学习
    3篇
  • pandas
    5篇
  • python 从入门到实践
    19篇
  • 人脸识别
    1篇
  • 算法刷题
    7篇
  • 图像算法工程师面试
    1篇
  • matlab-CV
    19篇
  • MXNet计算机视觉
    7篇
  • SIFT
    4篇
  • python计算机视觉编程
    4篇
  • Java
    1篇
  • Mysql
    2篇
  • C
  • python-GUI
    1篇
  • opencv
    12篇
  • 卷积神经网络
    7篇
  • 图像检索
    10篇
  • python从入门到实践
    30篇
  • pycharm软件激活
  • 机器学习实战
    2篇
  • 爬虫
    3篇
  • matlab--GUI
    1篇
  • vgg16
    1篇
  • keras
    10篇
  • Gabor滤波器
    2篇
  • Tensorflow
    9篇
  • matconvnet
    5篇
  • 电脑F盘消失
  • C++
    22篇
  • chainer
  • Mxnet深度学习
    5篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络自然语言处理pytorch图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

发布动态 2022.05.01

nn.PReLU()和nn.ReLU

1、nn.PReLU()nn.PReLU( num_parameters: int = 1, init: float = 0.25, device=None, dtype=None,)PReLU的公式:或者:其中a代表的是可学习的参数:(1)当不带参数时(nn.PReLU()),PReLU就使用一个a计算所有通道,即所有通道对应同一个a;(2)当有参数时(nn.PReLU(nchannels)),PReLU在每个通道使用不同的a;通道d
原创
发布博客 2022.04.28 ·
200 阅读 ·
4 点赞 ·
1 评论

HZ 2号线地铁有没有

发布动态 2022.04.28

CFPNet:用于实时语义分割的通道特征金字塔

由于对移动设备和自动驾驶的需求不断增长,实时语义分割在计算机视觉中发挥着越来越重要的作用。 因此,在性能、模型大小和推理速度之间取得良好的折衷是非常重要的。 在这篇论文中提出了一个 Channel-wise Feature Pyramid (CFP) 模块来平衡这些因素。 基于 CFP 模块,构建了用于实时语义分割的 CFPNet,它应用一系列扩张卷积通道来提取有效特征。 Cityscapes 和 CamVid 数据集的实验表明,所提出的 CFPNet 实现了这些因素的有效组合。
原创
发布博客 2022.04.27 ·
1180 阅读 ·
3 点赞 ·
0 评论

听说这车很值钱?

发布动态 2022.04.26

再苦再累不能亏了自己的胃 第二个不是自己做的,其他都是 一天的伙食

发布动态 2022.04.25

从序列化输入到蛋白质结构预测(RoseTTAFold&AlphaFold2)

蛋白质结构预测难???确实很难。。。。。快速批量化生成RoseTTAFold和alphafold2的输入序列和输出文件!
原创
发布博客 2022.04.25 ·
2530 阅读 ·
4 点赞 ·
0 评论

介绍了AlphaFold2的原理和简单的安装过程!

发布资源 2022.04.25 ·
pptx

MultiMAE:多模式多任务掩码自编码器

基于MAE,提出了一种多模式(RGB、Depth和Semantic)且多任务的MAE!
原创
发布博客 2022.04.20 ·
2724 阅读 ·
2 点赞 ·
0 评论

Masked Siamese Networksfor Label-Efficient Learning

MAE如何和ViT结合并用自监督学习
原创
发布博客 2022.04.18 ·
126 阅读 ·
2 点赞 ·
1 评论

OCR文字识别毕业设计

答:

这个网上很多的代码,针对不同应用场景的,你可以都跑一下,然后再综合一下,很简单的
推荐一个:
https://github.com/jimmyleaf/ocr_tensorflow_cnn

回答问题 2022.04.15

用质谱法定义 HLA-II 配体处理和结合规则可增强癌症表位预测

文献:Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction文献地址:Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction尽管它们在指导 T 细胞反应中发挥作用,但 HLA-
原创
发布博客 2022.04.12 ·
2028 阅读 ·
4 点赞 ·
4 评论

基于序列数据的数据增强方法综述文章,2021年的

发布资源 2022.04.11 ·
pdf

Swin-Transformer:基于移位窗口(Shifted Windows)的分层视觉Transformer

1、摘要Transformer在NLP领域取得不错表现,如何更好地处理图像成为行业所面临地问题。图像中的像素与文本中的单词相比分辨率较高,这就给从语言到视觉的转换带来了挑战。为了解决这些差异,我们提出了一种分层变换器,其表示是用移位窗口计算的。移位窗口方案将自我注意计算限制在非重叠的局部窗口上,同时允许跨窗口连接,从而提高了效率。...
原创
发布博客 2022.03.21 ·
10878 阅读 ·
4 点赞 ·
2 评论

人间真实

发布动态 2022.03.17

基于tensorflow2.4.0版本的transformer computer vision 训练数据集是cifar10

发布资源 2022.03.13 ·
zip

Transformer如何用于大规模图像识别?

1、Abstract and backgroundTransformer架构已经成为自然语言处理中取得不错效果,但它在计算机视觉中的应用仍然有限。在计算机视觉领域,注意力要么与卷积网络结合使用,要么用于替换卷积网络的某些组件,同时保持其整体结构。本文摆脱了CNN的束缚,直接将图像分成块序列然后输入到Transformer中执行图像分类任务。将一幅图像分割为多个patch(图像块),并将这些patch的线性嵌入序列作为Transformer的输入。图像块与NLP中的token(单词)的...
原创
发布博客 2022.03.10 ·
6484 阅读 ·
8 点赞 ·
5 评论

Attention is all you need?

1、Attention is all you need?1.1、摘要当时的序列转换模型大多是基于递归或卷积神经网络,包括编码器和解码器。通过注意力机制连接编码器和解码器取得最好的性能。本文提出一种相对简单的Transformer,完全基于注意机制,完全不需要循环和卷积。(完全依赖于一种注意机制来表示输入和输出之间的全局依赖关系)并且在两个机器翻译任务上取得不错的效果,同时支持并行、所需的训练时间显著降低。经过时间的证明Transformer还可以推广到其他任务。1.2、自注意力机...
原创
发布博客 2022.03.09 ·
3434 阅读 ·
2 点赞 ·
0 评论

RoseTTAFold如何在线使用?

如何在线使用AplhaFold2、RoseTTAFold?
原创
发布博客 2022.03.03 ·
716 阅读 ·
1 点赞 ·
0 评论

AttributeError: module ‘tensorflow.keras.backend‘ has no attribute ‘set_session‘

AttributeError: module 'tensorflow.keras.backend' has no attribute 'set_session'
原创
发布博客 2022.03.01 ·
768 阅读 ·
0 点赞 ·
3 评论
加载更多