【剑指Offer】动态规划

刷题 专栏收录该内容
36 篇文章 0 订阅

今天题目的主题是动态规划,题目难度上升,但都还是输入入门级的,不难理解。

剑指 Offer 10- I. 斐波那契数列

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.

斐波那契数列由 01 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1

示例 1:

输入:n = 2
输出:1

示例 2:

输入:n = 5
输出:5

提示:

  • 0 <= n <= 100
class Solution {
public:
    int fib(int n) {
        if(n == 0)return 0;
        if(n == 1)return 1;
        long long a = 0, b = 1, c = 2;
        int mod = 1000000007;
        while(c < n){
            long long t = b;
            b = (a + b) % mod;
            a = t;
            c ++;
        }
        return (int)(a + b) % mod;
    }
};

算法思路:

斐波那契数列,很经典的问题了,也是最基础的动态规划,从第一个数和第二个数开始一直求到第n个数就能得到结果,加的过程中注意取模就好。

剑指 Offer 10- II. 青蛙跳台阶问题

一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入:n = 2
输出:2

示例 2:

输入:n = 7
输出:21

示例 3:

输入:n = 0
输出:1

提示:

  • 0 <= n <= 100
class Solution {
public:
    int numWays(int n) {
        if(n == 0)return 1;
        if(n == 1)return 1;
        long long a = 1, b = 1, c = 2;
        int mod = 1000000007;
        while(c < n){
            long long t = b;
            b = (a + b) % mod;
            a = t;
            c ++;
        }
        return (int)(a + b) % mod;
    }
};

算法思路:

这一题和题一非常相似,一只青蛙可以跳两格或一格,因此两格有2种跳法(1+12),因此跳n(n>2)层楼梯的方法数f(n)等于上n-2层楼梯的方法数加上n-1层楼梯的方法数,即f(n)=f(n-1)+f(n-2),因此和斐波那契数列一样。

剑指 Offer 63. 股票的最大利润

假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可能获得的最大利润是多少?

示例 1:

输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。

示例 2:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

限制:

0 <= 数组长度 <= 10^5
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int ans = 0, maxn = -1, n = prices.size();;
        for(int i = n - 1; i >= 0; -- i){
            ans = max(ans, maxn - prices[i]);
            maxn = max(maxn, prices[i]);
        }
        return ans;
    }
};

算法思路:

问题求股票的最大利润,每一天的最大利润即为以后每天中价格的最大值减当天的价格,可以直接去遍历每个值的最大利润,但因为不同的两天在做比较时都有重复的比较区间,这部分是可以避免的,比如i,j(i<j)两天后半段的最大值m1m2m1一定不小于m2,因为i的比较范围大于j,因此可以从数组的右端开始比较,每次更新最大值和最大利润,这样就不用重复比较。

【剑指Offer】系列:
【剑指Offer】栈
【剑指Offer】链表
【剑指Offer】字符串
【剑指Offer】查找算法
【剑指Offer】查找算法(1)
【剑指Offer】搜索与回溯算法
【剑指Offer】搜索与回溯算法(1)

  • 1
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值