- 🧛♂️个人主页:杯咖啡
- 💡进步是今天的活动,明天的保证!
- ✨目前正在学习:SSM框架,算法刷题
- 👉本文收录专栏 : java刷算法牛客—剑指offer
- 🙌牛客网,刷算法过面试的神级网站,用牛客你也牛。 👉免费注册和我一起学习刷题👈
- 🐳希望大家多多支持🥰一起进步呀!
- 😎The man who fears losing has already lost.
怕输的人已经输了。 - 《权力的游戏》
✨今日三剑
JZ14 剪绳子
JZ15 二进制中1的个数
JZ16 数值的整数次方
JZ14 剪绳子
题目描述
思路详解
本题使用动态规划来解题,注意找规律哦
首先我们考虑一段绳子,如果一旦分出一段长度为1的小段,只会减少总长度,还不能增加乘积,因此长度为2的绳子不分比分开的乘积大,长度为3的绳子不分比分开的乘积大,长度为4的绳子分成2*2比较大。前面的我们都可以通过这样递推得到,后面的呢?
同样递推!如果我有一个长度为n的绳子,我们要怎么确定其分出最大的乘积,我们可以尝试其中一段不可分的为j,那么如果另一段n−j最大乘积已知,我们可以遍历所有j找到这个最大乘积。因此用dp[i]表示长度为i的绳子可以被剪出来的最大乘积,那么后续遍历每个j的时候,我们取最大dp[i]=max(dp[i],j∗dp[i−j])就好。
代码与结果
import java.util.*;
public class Solution {
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param n int整型
* @return int整型
*/
public int cutRope(int target) {
//不超过3直接计算
if(target <= 3)
return target- 1;
//dp[i]表示长度为i的绳子可以被剪出来的最大乘积
int[] dp = new int[target + 1];
dp[1] = 1;
dp[2] = 2;
dp[3] = 3;
dp[4] = 4;
//遍历后续每一个长度
for(int i = 5; i <= target; i++)
//可以被分成两份
for(int j = 1; j < i; j++)
//取最大值
dp[i] = Math.max(dp[i], j * dp[i - j]);
return dp[target];
}
}
JZ15 二进制中1的个数
题目描述
思路详解
本题我们采用按位比较,使用移位的方法不仅可以达到效果而且运行速度也会更快哦
代码与结果
import java.util.*;
public class Solution {
public int NumberOf1(int n) {
int res = 0;
//遍历32位
for(int i = 0; i < 32; i++){
//按位比较
if((n & (1 << i)) != 0)
res++;
}
return res;
}
}
JZ16 数值的整数次方
题目描述
思路详解
既然是求次方,那我们做不断累乘就可以了,重点是处理负的次方数,我们只需底数转换为相应分数,乘方次数变成正数就可以了。
代码与结果
import java.util.*;
public class Solution {
public double Power(double base, int exponent) {
//处理负数次方
if(exponent < 0){
base = 1 / base;
exponent = -exponent;
}
double res = 1.0;
//累乘
for(int i = 0; i < exponent; i++)
res *= base;
return res;
}
}
✨总结
今日的题还是比较简单的,相对而言第一题的动态规划需要更多的思考,加油!!!
原创不易,还希望各位大佬支持一下 \textcolor{blue}{原创不易,还希望各位大佬支持一下} 原创不易,还希望各位大佬支持一下
点赞,你的认可是我创作的动力! \textcolor{green}{点赞,你的认可是我创作的动力!} 点赞,你的认可是我创作的动力!
收藏,你的青睐是我努力的方向! \textcolor{green}{收藏,你的青睐是我努力的方向!} 收藏,你的青睐是我努力的方向!
评论,你的意见是我进步的财富! \textcolor{green}{评论,你的意见是我进步的财富!} 评论,你的意见是我进步的财富!