HDU 3648 Median Filter


http://acm.hdu.edu.cn/showproblem.php?pid=3648

题意:给出一个n*n的矩阵,现在对于(r+1, r+1) to (n-r, n-r)中每个点,以其为中心的规模为(2r+1)*(2r+1)的子矩阵,替换其中间元素为该子矩阵的中位数。

n<=500 元素<=10^6。


采用S型处理(r+1, r+1) to (n-r, n-r)这个区间,这样每次只需要删一行添一行即可。采用树状数组插入删除和查找中位数。


#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
//const double eps=1e-7;
//const double INF=1e50;
//const double pi=acos(-1);

#define N 505
#define M 1000005

int c[N][N],c1[N][N],a[M],lowbit[M],Max;

//树状数组从前往后求和,用来解第k大(或小)的数
int f_kth(int k)//log(n)复杂度
{
    int ans = 0, cnt = 0, i;

    for (i = 20; i >= 0; i--)//利用二进制的思想,把答案用一个二进制数来表示
    {
        ans += (1 << i);
        if (ans >= Max|| cnt + a[ans] >= k)//这里大于等于k的原因是可能大小为ans的数不在a[ans]的控制范围之内,所以这里求的是 < k
        ans -= (1 << i);
        else cnt += a[ans];//cnt用来累加比当前ans小的总组数
    }

    //求出的ans是累加和(即小于等于ans的数的个数)小于k的情况下ans的最大值,所以ans+1就是第k大的数
    return ans + 1;
}

void init()
{
    int i;
    for (i=0;i<M;i++)
    {
        //lowbit[i]=i&(-i);//初始化会超时
        a[i]=0;
    }
}

void in(int p)
{
    while(p<Max)
    {
        a[p]+=1;
        p+=p&(-p);//lowbit[i]=i&(-i);
    }
}

void re(int p)
{
    while(p<Max)
    {
        a[p]-=1;
        p+=p&(-p);//lowbit[i]=i&(-i);
    }
}

int main()
{
    //freopen("a","r",stdin);

    int i,j,n,k,r;

    while (1)
    {
        scanf("%d%d",&n,&r);
        if (n==0 && r==0) break;
        int rr=2*r*r+2*r+1;
        //memset(a,0,sizeof(a));
init();

        Max=0;
        for (i=1;i<=n;i++)
        for (j=1;j<=n;j++)
        {
            scanf("%d",&c[i][j]);
            c[i][j]+=1;
            if (c[i][j]>Max) Max=c[i][j];
        }

        //(r+1,r+1)
        for (i=1;i<=2*r+1;i++)
        for (j=1;j<=2*r+1;j++) in(c[i][j]);

        for (i=r+1;i<=n-r;i++)
        {
            if ((i-r)%2!=0)
            {
                for (j=r+1;j<=n-r;j++)
                {
                    if (j==r+1)
                    {
                        if (i==r+1) ;
                        else
                        {
                            for (k=1;k<=2*r+1;k++)
                            {
                                re(c[i-r-1][k]);
                                in(c[i+r][k]);
                            }
                        }
                    }
                    else
                    {
                        for (k=i-r;k<=i+r;k++)
                        {
                            re(c[k][j-r-1]);
                            in(c[k][j+r]);
                        }
                    }

                    c1[i][j]=f_kth(rr);
                }
            }
            else
            {
                j=n-r;
                for (k=j-r;k<=j+r;k++)
                {
                    re(c[i-r-1][k]);
                    in(c[i+r][k]);
                }
                c1[i][j]=f_kth(rr);

                for (j=n-r-1;j>=r+1;j--)
                {
                    for (k=i-r;k<=i+r;k++)
                    {
                        re(c[k][j+r+1]);
                        in(c[k][j-r]);
                    }

                    c1[i][j]=f_kth(rr);
                }
            }
        }

        for (i=r+1;i<=n-r;i++)
        {
            for (j=r+1;j<=n-r;j++) printf("%d ",c1[i][j]-1);
            printf("\n");
        }
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值