hdu 3648 Median Filter 树状数组+二分查找+优化

题意:

给一个n*n(500)的矩阵, 和一个半径r, 把每一个边长为2*r+1的正方形的中心变成这个正方形的中位数,然后输出变完之后的新矩阵。

题解:

这题如果暴力,用排序来做的话会超时,于是改成用树状数组求中位数,还是超了,超的原因是:每次都得重新把一个矩阵插入一个空的树状数组,这样太耗时,于是改为按照'S'形状遍历矩阵,这样的话,对于每一行,只要在原来树状数组的基础上删除第一列,然后再增加最后一列,对于每一行,同理只需删除第一行,增加最后一行即可,这样可大大的减少时间复杂度,另外需要注意的是:这题的末尾是有空格的,被坑死了。。。

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 500 + 10;
int mat[maxn][maxn], ans[maxn][maxn], maxv, n, r;

void read_input()
{
    maxv = 0;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n; j++)
        {
            scanf("%d", &mat[i][j]);
            mat[i][j]++;
            maxv = max(maxv, mat[i][j]);
        }
    }
}
int c[1000000 + 10];
inline int lowbit(int x) { return x & (-x) ;}
void add(int x, int v)
{
    while (x <= maxv)
    {
        c[x] += v;
        x += lowbit(x);
    }
}
int sum(int x)
{
    int ans = 0;
    
    while (x > 0)
    {
        ans += c[x];
        x -= lowbit(x);
    }
    return ans;
}
int biSearch(int x)
{
    int L = 1, R = maxv;
    
    while (L <= R)
    {
        int M = (L+R) >> 1;
        if (sum(M) < x) {
            L = M+1;
        }
        else {
            R = M-1;
        }
    }
    return L;
}
int cal_median()
{
    int tmp = (2*r+1)*(2*r+1);
    if (tmp & 1) return biSearch(tmp / 2 + 1);
    else return (biSearch(tmp / 2) + biSearch(tmp/2 + 1)) / 2;
}
void incre_col(int pr, int pc)
{
    for (int i = pr-r; i <= pr+r; i++)
    {
        add(mat[i][pc], 1);
    }
}
void decre_col(int pr, int pc)
{
    for (int i = pr-r; i <= pr+r; i++)
    {
        add(mat[i][pc], -1);
    }
}
void incre_row(int pr, int pc)
{
    for (int j = pc-r; j <= pc+r; j++)
    {
        add(mat[pr][j], 1);
    }
}
void decre_row(int pr, int pc)
{
    for (int j = pc-r; j <= pc+r; j++)
    {
        add(mat[pr][j], -1);
    }
}
void solve()
{
    memset(c, 0, sizeof(c));
    for (int j = 1; j <= 2*r+1; j++) {
        incre_col(r+1, j);
    }
    
    for (int i = r+1; i <= n-r; i++)
    {
        int val;
        if (((i-r-1) & 1) == 0) {
            if (i != r+1) {
                decre_row(i-1-r, r+1);
                incre_row(i+r, r+1);
            }
            for (int j = r+1; j <= n-r; j++)
            {
                if (j == r+1) val = cal_median();
                else {
                    decre_col(i, j-1-r);
                    incre_col(i, j+r);
                    val = cal_median();
                }
                ans[i][j] = val-1;
            }
        }
        else  {
            if (i != r+1) {
                decre_row(i-1-r, n-r);
                incre_row(i+r, n-r);
            }
            for (int j = n-r; j >= r+1; j--)
            {
                if (j == n-r) val = cal_median();
                else {
                    decre_col(i, j+1+r);
                    incre_col(i, j-r);
                    val = cal_median();
                }
                ans[i][j] = val-1;
            }
        }
    }
}
void print()
{
    for (int i = r+1; i <= n-r; i++)
    {
        for (int j = r+1; j <= n-r; j++)
        {
            printf("%d ", ans[i][j]);
        }
        printf("\n");
    }
}
int main()
{
//    freopen("/Users/apple/Desktop/in.txt", "r", stdin);
    while (scanf("%d%d", &n, &r) && (n||r))
    {
        read_input();
        solve();
        print();
    }
    
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值