题意:
给一个n*n(500)的矩阵, 和一个半径r, 把每一个边长为2*r+1的正方形的中心变成这个正方形的中位数,然后输出变完之后的新矩阵。
题解:
这题如果暴力,用排序来做的话会超时,于是改成用树状数组求中位数,还是超了,超的原因是:每次都得重新把一个矩阵插入一个空的树状数组,这样太耗时,于是改为按照'S'形状遍历矩阵,这样的话,对于每一行,只要在原来树状数组的基础上删除第一列,然后再增加最后一列,对于每一行,同理只需删除第一行,增加最后一行即可,这样可大大的减少时间复杂度,另外需要注意的是:这题的末尾是有空格的,被坑死了。。。
代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 500 + 10;
int mat[maxn][maxn], ans[maxn][maxn], maxv, n, r;
void read_input()
{
maxv = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
scanf("%d", &mat[i][j]);
mat[i][j]++;
maxv = max(maxv, mat[i][j]);
}
}
}
int c[1000000 + 10];
inline int lowbit(int x) { return x & (-x) ;}
void add(int x, int v)
{
while (x <= maxv)
{
c[x] += v;
x += lowbit(x);
}
}
int sum(int x)
{
int ans = 0;
while (x > 0)
{
ans += c[x];
x -= lowbit(x);
}
return ans;
}
int biSearch(int x)
{
int L = 1, R = maxv;
while (L <= R)
{
int M = (L+R) >> 1;
if (sum(M) < x) {
L = M+1;
}
else {
R = M-1;
}
}
return L;
}
int cal_median()
{
int tmp = (2*r+1)*(2*r+1);
if (tmp & 1) return biSearch(tmp / 2 + 1);
else return (biSearch(tmp / 2) + biSearch(tmp/2 + 1)) / 2;
}
void incre_col(int pr, int pc)
{
for (int i = pr-r; i <= pr+r; i++)
{
add(mat[i][pc], 1);
}
}
void decre_col(int pr, int pc)
{
for (int i = pr-r; i <= pr+r; i++)
{
add(mat[i][pc], -1);
}
}
void incre_row(int pr, int pc)
{
for (int j = pc-r; j <= pc+r; j++)
{
add(mat[pr][j], 1);
}
}
void decre_row(int pr, int pc)
{
for (int j = pc-r; j <= pc+r; j++)
{
add(mat[pr][j], -1);
}
}
void solve()
{
memset(c, 0, sizeof(c));
for (int j = 1; j <= 2*r+1; j++) {
incre_col(r+1, j);
}
for (int i = r+1; i <= n-r; i++)
{
int val;
if (((i-r-1) & 1) == 0) {
if (i != r+1) {
decre_row(i-1-r, r+1);
incre_row(i+r, r+1);
}
for (int j = r+1; j <= n-r; j++)
{
if (j == r+1) val = cal_median();
else {
decre_col(i, j-1-r);
incre_col(i, j+r);
val = cal_median();
}
ans[i][j] = val-1;
}
}
else {
if (i != r+1) {
decre_row(i-1-r, n-r);
incre_row(i+r, n-r);
}
for (int j = n-r; j >= r+1; j--)
{
if (j == n-r) val = cal_median();
else {
decre_col(i, j+1+r);
incre_col(i, j-r);
val = cal_median();
}
ans[i][j] = val-1;
}
}
}
}
void print()
{
for (int i = r+1; i <= n-r; i++)
{
for (int j = r+1; j <= n-r; j++)
{
printf("%d ", ans[i][j]);
}
printf("\n");
}
}
int main()
{
// freopen("/Users/apple/Desktop/in.txt", "r", stdin);
while (scanf("%d%d", &n, &r) && (n||r))
{
read_input();
solve();
print();
}
return 0;
}